Answer:
y = 100°
Step-by-step explanation:
I can't see the full question, but I'm guessing you need to find the measure of angle y.
The total angle sum of a polygon can be calculated with the formula
T = 180°(n - 2) where T is the total angle measure, and n i the number of sides.
For our shape, there are 4 sides, so n = 4. Plug that in and simplify...
T = 180°(4 - 2)
T = 180°(2)
T = 360°
We are given 3 of the angles, so angle y is
y = 360 - 107 - 104 - 49
y = 100°
Answer: the function g(x) has the smallest minimum y-value.
Explanation:
1) The function f(x) = 3x² + 12x + 16 is a parabola.
The vertex of the parabola is the minimum or maximum on the parabola.
If the parabola open down then the vertex is a maximum, and if the parabola open upward the vertex is a minimum.
The sign of the coefficient of the quadratic term tells whether the parabola opens upward or downward.
When such coefficient is positive, the parabola opens upward (so it has a minimum); when the coefficient is negative the parabola opens downward (so it has a maximum).
Here the coefficient is positive (3), which tells that the vertex of the parabola is a miimum.
Then, finding the minimum value of the function is done by finding the vertex.
I will change the form of the function to the vertex form by completing squares:
Given: 3x² + 12x + 16
Group: (3x² + 12x) + 16
Common factor: 3 [x² + 4x ] + 16
Complete squares: 3[ ( x² + 4x + 4) - 4] + 16
Factor the trinomial: 3 [(x + 2)² - 4] + 16
Distributive property: 3 (x + 2)² - 12 + 16
Combine like terms: 3 (x + 2)² + 4
That is the vertex form: A(x - h)² + k, whch means that the vertex is (h,k) = (-2, 4).
Then the minimum value is 4 (when x = - 2).
2) The othe function is <span>g(x)= 2 *sin(x-pi)
</span>
The sine function goes from -1 to + 1, so the minimum value of sin(x - pi) is - 1.
When you multiply by 2, you just increased the amplitude of the function and obtain the new minimum value is 2 (-1) = - 2
Comparing the two minima, you have 4 vs - 2, and so the function g(x) has the smallest minimum y-value.
Answer:
See answers and explanations
Step-by-step explanation:
A) Discriminant = b² - 4ac = (12)² - 4(9)(4) = 144 - 144 = 0
B) Since the discriminant is 0, this means the equation only has one root.
C) The root is real in this case since the discriminant is not negative. Otherwise, we would have two imaginary roots if it were (remember that complex roots come in pairs)
Answer:

Step-by-step explanation:
Hello, please consider the following.
The polynomial function is

The rational root theorem states that each rational solution
, written in irreducible fraction, satisfies the two following:
p is a factor of the constant term
q is a factor of the leading coefficient
In this example, the constant term is 14 and the leading coefficient is 1. It means that p is a factor of 14 and q a factor of 1.
Let's proceed with the prime factorisation of 14:
14 = 2 * 7
Finally, the possible rational roots of this expression are :
1
2
7
14
and we need to test for negative ones too
-1
-2
-7
-14
From your list, the correct answer is 7.
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Answer:

Step-by-step explanation:
Hello,
a and b are the zeros, we can say that

So we can say that

Now, we are looking for a polynomial where zeros are 2a+3b and 3a+2b
for instance we can write

and we can notice that
so
![(x-2a-3b)(x-3a-2b)=x^2-5(a+b)x+6[(a+b)2-2ab]+13ab\\= x^2-5(a+b)x+6(a+b)^2+ab](https://tex.z-dn.net/?f=%28x-2a-3b%29%28x-3a-2b%29%3Dx%5E2-5%28a%2Bb%29x%2B6%5B%28a%2Bb%292-2ab%5D%2B13ab%5C%5C%3D%20x%5E2-5%28a%2Bb%29x%2B6%28a%2Bb%29%5E2%2Bab)
it comes

multiply by 3
