1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis-greek [22]
2 years ago
7

Can someone help me please

Mathematics
1 answer:
oksano4ka [1.4K]2 years ago
8 0
The answer would be D

You might be interested in
Ron has 20 apples he used two fifthsof the apple to make pies.how many apples did Ron us for pies?
CaHeK987 [17]
50 apples. Ron used 50 apples
7 0
3 years ago
A mass weighing 16 pounds stretches a spring (8/3) feet. The mass is initially released from rest from a point 2 feet below the
mezya [45]

Answer with Step-by-step explanation:

Let a mass weighing 16 pounds stretches a spring \frac{8}{3} feet.

Mass=m=\frac{W}{g}

Mass=m=\frac{16}{32}

g=32 ft/s^2

Mass,m=\frac{1}{2} Slug

By hook's law

w=kx

16=\frac{8}{3} k

k=\frac{16\times 3}{8}=6 lb/ft

f(t)=10cos(3t)

A damping force is numerically equal to 1/2 the instantaneous velocity

\beta=\frac{1}{2}

Equation of motion :

m\frac{d^2x}{dt^2}=-kx-\beta \frac{dx}{dt}+f(t)

Using this equation

\frac{1}{2}\frac{d^2x}{dt^2}=-6x-\frac{1}{2}\frac{dx}{dt}+10cos(3t)

\frac{1}{2}\frac{d^2x}{dt^2}+\frac{1}{2}\frac{dx}{dt}+6x=10cos(3t)

\frac{d^2x}{dt^2}+\frac{dx}{dt}+12x=20cos(3t)

Auxillary equation

m^2+m+12=0

m=\frac{-1\pm\sqrt{1-4(1)(12)}}{2}

m=\frac{-1\pmi\sqrt{47}}{2}

m_1=\frac{-1+i\sqrt{47}}{2}

m_2=\frac{-1-i\sqrt{47}}{2}

Complementary function

e^{\frac{-t}{2}}(c_1cos\frac{\sqrt{47}}{2}+c_2sin\frac{\sqrt{47}}{2})

To find the particular solution using undetermined coefficient method

x_p(t)=Acos(3t)+Bsin(3t)

x'_p(t)=-3Asin(3t)+3Bcos(3t)

x''_p(t)=-9Acos(3t)-9sin(3t)

This solution satisfied the equation therefore, substitute the values in the differential equation

-9Acos(3t)-9Bsin(3t)-3Asin(3t)+3Bcos(3t)+12(Acos(3t)+Bsin(3t))=20cos(3t)

(3B+3A)cos(3t)+(3B-3A)sin(3t)=20cso(3t)

Comparing on both sides

3B+3A=20

3B-3A=0

Adding both equation then, we get

6B=20

B=\frac{20}{6}=\frac{10}{3}

Substitute the value of B in any equation

3A+10=20

3A=20-10=10

A=\frac{10}{3}

Particular solution, x_p(t)=\frac{10}{3}cos(3t)+\frac{10}{3}sin(3t)

Now, the general solution

x(t)=e^{-\frac{t}{2}}(c_1cos(\frac{\sqrt{47}t}{2})+c_2sin(\frac{\sqrt{47}t}{2})+\frac{10}{3}cos(3t)+\frac{10}{3}sin(3t)

From initial condition

x(0)=2 ft

x'(0)=0

Substitute the values t=0 and x(0)=2

2=c_1+\frac{10}{3}

2-\frac{10}{3}=c_1

c_1=\frac{-4}{3}

x'(t)=-\frac{1}{2}e^{-\frac{t}{2}}(c_1cos(\frac{\sqrt{47}t}{2})+c_2sin(\frac{\sqrt{47}t}{2})+e^{-\frac{t}{2}}(-c_1\frac{\sqrt{47}}{2}sin(\frac{\sqrt{47}t}{2})+\frac{\sqrt{47}}{2}c_2cos(\frac{\sqrt{47}t}{2})-10sin(3t)+10cos(3t)

Substitute x'(0)=0

0=-\frac{1}{2}\times c_1+10+\frac{\sqrt{47}}{2}c_2

\frac{\sqrt{47}}{2}c_2-\frac{1}{2}\times \frac{-4}{3}+10=0

\frac{\sqrt{47}}{2}c_2=-\frac{2}{3}-10=-\frac{32}{3}

c_2==-\frac{64}{3\sqrt{47}}

Substitute the values then we get

x(t)=e^{-\frac{t}{2}}(-\frac{4}{3}cos(\frac{\sqrt{47}t}{2})-\frac{64}{3\sqrt{47}}sin(\frac{\sqrt{47}t}{2})+\frac{10}{3}cos(3t)+\frac{10}{3}sin(3t)

8 0
3 years ago
48=56+8b solve for b
nata0808 [166]

Answer:

b= -1

Step-by-step explanation:

48         =.    56 +8b

-56             -56

---------------------------------

-8       =   8b

Divide 8 on both sides

-1=b

4 0
3 years ago
Read 2 more answers
(1.1/1.2: Interpolating polynomials) Say we want to find a polynomialf(x) ofdegree 3,f(x) =a0+a1x+a2x2+a3x3,satisfying some inte
Hunter-Best [27]

(a) If

<em>f(x)</em> = <em>a</em>₀ + <em>a</em>₁ <em>x </em>+<em> a</em>₂ <em>x</em> ² + <em>a</em>₃ <em>x</em> ³

then from the given conditions we get the system of equations,

<em>f</em> (-1) = <em>a</em>₀ - <em>a</em>₁<em> </em>+<em> a</em>₂ - <em>a</em>₃ = -1

<em>f</em> (1) = <em>a</em>₀ + <em>a</em>₁<em> </em>+<em> a</em>₂ + <em>a</em>₃ = 2

<em>f</em> (2) = <em>a</em>₀ + 2<em>a</em>₁<em> </em>+ 4<em>a</em>₂ + 8<em>a</em>₃ = 1

<em>f</em> (3) = <em>a</em>₀ + 3<em>a</em>₁<em> </em>+<em> </em>9<em>a</em>₂ + 27<em>x</em> ³ = 5

(b) Similarly, if

<em>f(x)</em> = <em>a</em>₀ + <em>a</em>₁ <em>x </em>+<em> a</em>₂ <em>x</em> ² + <em>a</em>₃ <em>x</em> ³

then

<em>f'(x)</em> = <em>a</em>₁<em> </em>+<em> </em>2<em>a</em>₂ <em>x</em> + 3<em>a</em>₃ <em>x</em> ²

so that the given conditions yield the system,

<em>f</em> (1) = <em>a</em>₀ + <em>a</em>₁<em> </em>+<em> a</em>₂ + <em>a</em>₃ = 0

<em>f'</em> (1) = <em>a</em>₁<em> </em>+<em> </em>2<em>a</em>₂ + 3<em>a</em>₃ = 2

<em>f</em> (2) = <em>a</em>₀ + 2<em>a</em>₁<em> </em>+<em> </em>4<em>a</em>₂ + 27<em>a</em>₃ = 3

<em>f'</em> (2) = <em>a</em>₁<em> </em>+<em> </em>4<em>a</em>₂ + 12<em>a</em>₃ = -1

7 0
2 years ago
A square has a perimeter of 28 ft. What is the length of each side? and it is in ft
Virty [35]

Answer: 7 feet

Step-by-step explanation:

Since all 4 sides of a square are equal, you do 28 / 4 = 7 feet, which is the answer.

7 0
3 years ago
Read 2 more answers
Other questions:
  • How do i solve using distributive property ? <br><br> 10 (9-m)
    11·1 answer
  • My brother makes $8.10 per hour. I make $1.35 more than he does. How much do I make per hour?
    13·2 answers
  • Start with x^2 + 4x = 12 and complete the square, what is the equivalent equation?
    15·1 answer
  • 12a + 12b + 12c + 12d Michael writes the expression shown here as 12(a + b + c + d). He is correctly using the ___________ prope
    15·1 answer
  • Heyy! i’ll give brainliest please help thanks
    5·2 answers
  • If 9 - X= 2, what does x equal?
    7·1 answer
  • Helpppp plzzz helllpppp...and give steps plzz
    5·2 answers
  • A new plasma-screen television has purchase price of 4980 if sales tax on this purchase is 398.40 find the sales tax rate
    13·2 answers
  • 9) Graduation is around the corner! You
    5·1 answer
  • Write 7649 10,000 in decimal notation.​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!