Answer: (2,8), because the graph of the two equations intersects at this point.
Step-by-step explanation: Got u. it's right 1000%
Answer:
A. A rational number gives you a remender when you divide it through by let say an even number 2.so irrational gives you no remender, hence A as an answer.
Answer:
Time taken to complete a test.
-Number of cars in a -household.
-Number of siblings
Distance driven to school.
Step-by-step explanation:
Data used for a dot plot is relatively small data set where the values can fall into a number of categories/bins. Dot plots are used for univariate data where the variable is quantitative or categorical
Y=7 is just a straight horizonal line that is perpendicular to the y axis at 7
and y=1/2x+6, is in y=mx+b form where m=slope and b=yintercept so
to find the intersection, yo just find when both sentances are correct so
y=7
subsitute that into y=1/2x+6
7=1/2x+6
subtract 6 from both sides
1=1/2x
multiply both sides by 2
2=x
so the point (2,7) is the intersection
Answer:
So Philip made 5 bracelets and 4 necklaces.
Step-by-step explanation:
Let x = number of bracelets and y = number of necklaces.
Since we have a total of 9 bracelets and necklaces,
x + y = 9 (1)
Also, we have 8 inches of cord for each bracelet and 20 inches of cord for each necklace, then the total length for the bracelet is 8x and that for the necklace is 20y.
So, the total length for both is 8x + 20y. Since the total length of cord used is 120 inches,
8x + 20y = 120 (2)
Simplifying it we have
2x + 5y = 30 (3).
Writing equations (1) and (3) in matrix form, we have
![\left[\begin{array}{ccc}1&1\\2&5\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}9\\30\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C2%265%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%5C%5C30%5Cend%7Barray%7D%5Cright%5D)
Using Cramer's rule to solve for x and y,
![x = det \left[\begin{array}{ccc}9&1\\30&5\end{array}\right] /det \left[\begin{array}{ccc}1&1\\2&5\end{array}\right] \\](https://tex.z-dn.net/?f=x%20%3D%20det%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%261%5C%5C30%265%5Cend%7Barray%7D%5Cright%5D%20%2Fdet%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C2%265%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
x = (9 × 5 - 30 × 1) ÷ (1 × 5 - 1 × 2)
x = (45 - 30) ÷ (5 - 2)
x = 15 ÷ 3
x = 5
![y = det \left[\begin{array}{ccc}1&9\\2&30\end{array}\right] /det \left[\begin{array}{ccc}1&1\\2&5\end{array}\right] \\](https://tex.z-dn.net/?f=y%20%3D%20det%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%269%5C%5C2%2630%5Cend%7Barray%7D%5Cright%5D%20%2Fdet%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C2%265%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
y = (30 × 1 - 9 × 2) ÷ (1 × 5 - 1 × 2)
y = (30 - 18) ÷ (5 - 2)
y = 12 ÷ 3
y = 4
So Philip made 5 bracelets and 4 necklaces.