Answer:
You will save $24.50
Step-by-step explanation:
because 35 x0.3= 10.50, therefore 35 - 10.50=24.50 the answer
Answer:
(a) y(x)=53+7x
(b) 179
Step-by-step explanation:
Since the first row has 60 seats and next row has 7 additional seats then we can represent it as
First row=60
Second row=60+7=67
Third row=67+7=74
The difference is always 7. If you deduct 7 from dirst row we get 60-7=53 seats
To get rhe number of seats in any row x then let y be the number of seats in row x
y=53+7(x)
For raw 1
Y=53+7(1)=60
For raw 2
Y=53+7(2)=67
Therefore, the formula for number of seats at any row will be
y(x)=53+7(x)
(b)
Using the above formula
y(x)=53+7(x)
Replace x with 18 hence
Y(18)=53+7*(18)=179 seats
Answer:
Problem 4 If the point (2, 2) is in the feasible set and the vertices of the feasible sct are (0,0), (0, 12). (6,18). (14, 16), and (18, 0), then determine the system of linear inequalities that created the feasible set. Show all the work that led you to you answer. (10 points) Problem 5 When Jack started his job working for an industrial manufacturing company, he contributed $100 at the end of each month into a savings account that earned 1.2 % interest compounded monthly for 8 years. At the end of the year, Jack was laid off. To help mect family expenses, Jack withdrew $285 from the savings account at the end of each month for 2 years. At the end of the second year of being unemployed, Jack found another job and started contributing $138 back into the savings account at the end of each month for the next six years. How much money would he have in the account at the end of the six years (after returning to work)? You may use the TVM Solver. Show all the necessary work that you need perform to arrive at the answer. (10 points)
Problem 5 When Jack started his job working for an industrial manufacturing company, he contributed $100 at the end of each month into a savings account that earned 1.2 % interest compounded monthly for 8 years. At the end of the 8th year, Jack was laid off. To help meet family expenses, Jack withdrew $285 from the savings account at the end of each month for 2 years. At the end of the second year of being unemployed, Jack found another job and started contributing $138 back into the savings account at the end of each month for the next six years. How much money would he have in the account at the end of the six years after returning to work)? You may use the TVM Solver. Show all the necessary work that you need perform to arrive at the answer. (10 points)
Well you're given the equation and the time.
substitute:
V(t) = 26,000(0.90^t)
V(11) = 26,000(0.90^(11))
V(11) = 8,159.075498
V(11) ≈ 8,159