Answer:
Company A: 250+10n
Company B: 90+12n
Step-by-step explanation:
I’m assuming what you’re asking here is how to *factor* this expression. For that, let’s rearrange the expression into a more familiar form:
-c^2-4c+21
From here, we’ll factor out a -1 so that we have:
-(c^2+4c-21)
Let’s focus on the quadratic expression inside the parentheses. To find our factors (c + x)(c + y), we’ll need to find two terms x and y that multiply together to make -21 and add together to make 4. It turns out that the numbers -3 and 7 work out perfectly for that purpose (-3 x 7 = -21 and 7 + (-3) = 4), so substituting them in for x and y, we have:
(c + (-3))(c + 7)
(c - 3)(c + 7)
And adding back on the negative from a few steps earlier:
-(c - 3)(c + 7)
Answer:
Step-by-step explanation:
The solution is in the attached file
Answer:
Total possible number of outcomes = C(24,6) [24 choose 6]
=24!/(6!18!)
= 134596
Out of which there is only one winning combination.
Therefore we conclude:
P(win 20000)=1/134596
P(lose 1)=134595/134596
and hence the expected value is:
20000*(1/134596)+(-1)*(134595/134596)
=-114595/134596
=-0.8514 (rounded to four places after decimal)
Step-by-step explanation:
Hope this helped!