Answer: 14 new users are added per second
Step-by-step explanation:
1,200,000/24 = 50000
50000/60 = 833.333333333
833.333333333/60 = 13.8888888889
then round because it said on average
so if we round 13.8888888889 we get 14
so on average 14 new users are added per second.
Do 10 x 1.5 = 15 lbs. 15x20=300. So, 20 boxes of sugar weighs 300 pounds. Hope this helps.
Check the picture below to the left, let's use those sides with the law of sines
![\textit{Law of sines} \\\\ \cfrac{sin(\measuredangle A)}{a}=\cfrac{sin(\measuredangle B)}{b}=\cfrac{sin(\measuredangle C)}{c} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{sin(14^o)}{97}=\cfrac{sin(84^o)}{XZ}\implies XZ = \cfrac{97\cdot sin(84^o)}{sin(14^o)}\implies XZ \approx 398.76 \\\\\\ \stackrel{\textit{now using SOH CAH TOA}}{cos(82^o) = \cfrac{XW}{XZ}}\implies XZcos(82^o)=XW \\\\\\ 398.76cos(82^o)\approx XW\implies 55.497\approx XW\implies \stackrel{\textit{rounded up}}{55=XW}](https://tex.z-dn.net/?f=%5Ctextit%7BLaw%20of%20sines%7D%20%5C%5C%5C%5C%20%5Ccfrac%7Bsin%28%5Cmeasuredangle%20A%29%7D%7Ba%7D%3D%5Ccfrac%7Bsin%28%5Cmeasuredangle%20B%29%7D%7Bb%7D%3D%5Ccfrac%7Bsin%28%5Cmeasuredangle%20C%29%7D%7Bc%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7Bsin%2814%5Eo%29%7D%7B97%7D%3D%5Ccfrac%7Bsin%2884%5Eo%29%7D%7BXZ%7D%5Cimplies%20XZ%20%3D%20%5Ccfrac%7B97%5Ccdot%20sin%2884%5Eo%29%7D%7Bsin%2814%5Eo%29%7D%5Cimplies%20XZ%20%5Capprox%20398.76%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bnow%20using%20SOH%20CAH%20TOA%7D%7D%7Bcos%2882%5Eo%29%20%3D%20%5Ccfrac%7BXW%7D%7BXZ%7D%7D%5Cimplies%20XZcos%2882%5Eo%29%3DXW%20%5C%5C%5C%5C%5C%5C%20398.76cos%2882%5Eo%29%5Capprox%20XW%5Cimplies%2055.497%5Capprox%20XW%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Brounded%20up%7D%7D%7B55%3DXW%7D)
Answer:
d is your answer
Step-by-step explanation:
Answer:
See explanation
Step-by-step explanation:
To solve the equation
graphically, we need to consider left and right parts of this equation separately.
Left side gives us the function
The graph of this function is shown with green curve in attached diagram.
Right side gives us the function
The graph of this function is shown with blue curve in attached diagram.
The x-coordinates of the points of their intersections are the solutions to the equation 
From the graph you can see that the solutions are
