Yes; a triangle is formed:
<span>______________________________________________________</span>
m∡A = 17° ;
m∡B = 137° (given) ;
m∡C = 26° ;
a = 6 ;
b = 14 (given) ;
c = 9 (given) .
______________________________________________________
Explanation:
______________________________________________________
Note:
The law of sines:
(sin A) / a = (sin B) / b = (sin C) / c ;
______________________________________________________
Given:
______________________________________________________
B = 137 ;
c = 9 ;
b =14 ;
______________________________________________________
(sin B) / b = (sin C) / c ;
(sin 137) / 14 = (sin C) / 9 ;
(0.681998360062) / 14 = 0.0487141685758571 = (sin C) / 9 ;
______________________________________________________
sin C = (0.0487141685758571) * (9) ;
sin C = 0.4384275171827139 ;
Take the "arc sin" of each side of the equation; to isolate "C" on one side of the equation; and to solve for "C" ;
arc sin (C) = arc sin ( 0.4384275171827139) ;
C = 26.003593520741 ; round to 26.
If all angles of a triangle add up to 180 degrees: then:
A + B + C = 180 ;
A + 137 + 26 = 180 ;
A + 163 = 180 ;
Subtract "163" from each side of the equation; to isolate "A" on one side of the equation; and to solve for "A" ;
A + 163 − 163 = 180 − 163 ;
A = 17 ;
Now, to solve for "a" ;
(sin A) / a = (sin B)/ b ;
(sin 17) / a = 0.0487141685758571 ;
(0.0487141685758571) a = (sin 17) ;
Divide EACH SIDE of the equation by: "(0.0487141685758571)" ;
______________________________________________________
to isolate "a" on one side of the equation; and to solve for "a" ;
______________________________________________________
[(0.0487141685758571)a ] / (0.0487141685758571) =
(sin 17) / (0.0487141685758571) ;
_________________________________________________________
a = (sin 17) / (0.0487141685758571) ;
= (0.292371704723) / (0.0487141685758571) ;
a = 6.0017796314787227112 ; round to "6" .
_________________________________________________________
Answer:
A. 0.62%
B. 28 months
Step-by-step explanation:
A. Calculation for what percentage of total production will the company expect to replace
Let x represents the distribution of life times
Let mean be 34 months
Let standard deviation be 4 months.
Based on the information the full refund on any defective watch for 2 years will represent 24 months (2 years *12 months).
First step
P(X<24)
= p(x-mean/ standard deviation< 24-34/4)
= p(z< -10/4)
=P(z<-2.5)
Second step is to Use the excel function to find NORMSDIST(z) of P(z<-2.5)
NORMSDIST(z)=0.62%
Therefore the percentage of total production will the company expect to replace will be 0.62%
B. Calculation for how much the guarantee period should be
First step
P(X<x)=0.06
P(x-Mean/Standard deviation < x-34/4) = 0.06
Second Step is to Use excel function
P(z<x-34/4) = (Normsinv(0.06)
x-34/4 = -1.555
Now let calculate how much the guarantee period should be
x = -6.22+34 months
x = 27.78
x = 28 months (Approximately)
Therefore the guarantee period should be 28 months
The value of the product expression is –6p^3 + 8p^2 – 10p
<h3>How to simplify the product?</h3>
The product expression is given as:
2p(–3p2 + 4p – 5)
Rewrite properly as:
2p(–3p^2 + 4p – 5)
Remove the bracket
2p * –3p^2 + 2p * 4p – 2p * 5
Evaluate the products
–6p^3 + 8p^2 – 10p
Hence, the value of the product expression is –6p^3 + 8p^2 – 10p
Read more about expression at
brainly.com/question/4541471
#SPJ1
Answer:
ur a sixth grader do the spiral review dabs
Step-by-step explanation: