Answer:
The drawn in the attached figure
see the explanation
Step-by-step explanation:
<em>First case</em>
In the triangle ABC
Let
![a=4\ units\\b=2/ units\\B=30^o](https://tex.z-dn.net/?f=a%3D4%5C%20units%5C%5Cb%3D2%2F%20units%5C%5CB%3D30%5Eo)
Applying the law of sines
Find the measure of angle A
![\frac{a}{sin(A)}=\frac{b}{sin(B)}](https://tex.z-dn.net/?f=%5Cfrac%7Ba%7D%7Bsin%28A%29%7D%3D%5Cfrac%7Bb%7D%7Bsin%28B%29%7D)
substitute the given values
![\frac{4}{sin(A)}=\frac{2}{sin(30^o)}](https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7Bsin%28A%29%7D%3D%5Cfrac%7B2%7D%7Bsin%2830%5Eo%29%7D)
![sin(A)=1](https://tex.z-dn.net/?f=sin%28A%29%3D1)
so
![A=90^o](https://tex.z-dn.net/?f=A%3D90%5Eo)
Find the measure of angle C
In a right triangle
we know that
----> by complementary angles
![B=30^o](https://tex.z-dn.net/?f=B%3D30%5Eo)
therefore
![C=60^o](https://tex.z-dn.net/?f=C%3D60%5Eo)
Find the length side c
Applying the law of sines
![\frac{c}{sin(C)}=\frac{b}{sin(B)}](https://tex.z-dn.net/?f=%5Cfrac%7Bc%7D%7Bsin%28C%29%7D%3D%5Cfrac%7Bb%7D%7Bsin%28B%29%7D)
substitute the given values
![\frac{c}{sin(60^o)}=\frac{2}{sin(30^o)}](https://tex.z-dn.net/?f=%5Cfrac%7Bc%7D%7Bsin%2860%5Eo%29%7D%3D%5Cfrac%7B2%7D%7Bsin%2830%5Eo%29%7D)
![c=2\sqrt{3}\ units](https://tex.z-dn.net/?f=c%3D2%5Csqrt%7B3%7D%5C%20units)
therefore
The dimensions of the triangle are
![A=90^o](https://tex.z-dn.net/?f=A%3D90%5Eo)
![B=30^o](https://tex.z-dn.net/?f=B%3D30%5Eo)
![C=60^o](https://tex.z-dn.net/?f=C%3D60%5Eo)
![a=4\ units\\b=2\ units\\c=2\sqrt{3}=3.46\ units](https://tex.z-dn.net/?f=a%3D4%5C%20units%5C%5Cb%3D2%5C%20units%5C%5Cc%3D2%5Csqrt%7B3%7D%3D3.46%5C%20units)
<em>Second case</em>
In the triangle ABC
Let
![a=4\ units\\b=2/ units\\A=30^o](https://tex.z-dn.net/?f=a%3D4%5C%20units%5C%5Cb%3D2%2F%20units%5C%5CA%3D30%5Eo)
Applying the law of sines
Find the measure of angle B
![\frac{a}{sin(A)}=\frac{b}{sin(B)}](https://tex.z-dn.net/?f=%5Cfrac%7Ba%7D%7Bsin%28A%29%7D%3D%5Cfrac%7Bb%7D%7Bsin%28B%29%7D)
substitute the given values
![\frac{4}{sin(30^o)}=\frac{2}{sin(B)}](https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7Bsin%2830%5Eo%29%7D%3D%5Cfrac%7B2%7D%7Bsin%28B%29%7D)
![sin(B)=0.25](https://tex.z-dn.net/?f=sin%28B%29%3D0.25)
so
using a calculator
![B=14.48^o](https://tex.z-dn.net/?f=B%3D14.48%5Eo)
Find the measure of angle C
we know that
The sum of the interior angles in any triangle must be equal to 180 degrees
so
![A=30^o\\B=14.48^o](https://tex.z-dn.net/?f=A%3D30%5Eo%5C%5CB%3D14.48%5Eo)
therefore
![30^o+14.48^o+C=180^o](https://tex.z-dn.net/?f=30%5Eo%2B14.48%5Eo%2BC%3D180%5Eo)
![C=135.52^o](https://tex.z-dn.net/?f=C%3D135.52%5Eo)
Find the length side c
Applying the law of sines
![\frac{c}{sin(C)}=\frac{a}{sin(A)}](https://tex.z-dn.net/?f=%5Cfrac%7Bc%7D%7Bsin%28C%29%7D%3D%5Cfrac%7Ba%7D%7Bsin%28A%29%7D)
substitute the given values
![\frac{c}{sin(135.52^o)}=\frac{4}{sin(30^o)}](https://tex.z-dn.net/?f=%5Cfrac%7Bc%7D%7Bsin%28135.52%5Eo%29%7D%3D%5Cfrac%7B4%7D%7Bsin%2830%5Eo%29%7D)
![c=5.61\ units](https://tex.z-dn.net/?f=c%3D5.61%5C%20units)
therefore
The dimensions of the triangle are
![A=30^o](https://tex.z-dn.net/?f=A%3D30%5Eo)
![B=14.48^o](https://tex.z-dn.net/?f=B%3D14.48%5Eo)
![C=135.52^o](https://tex.z-dn.net/?f=C%3D135.52%5Eo)
![a=4\ units\\b=2\ units\\c=5.61\ units](https://tex.z-dn.net/?f=a%3D4%5C%20units%5C%5Cb%3D2%5C%20units%5C%5Cc%3D5.61%5C%20units)
see the attached figure to better understand the problem