Problem 5
Apply the Law of Sines
s/sin(S) = r/sin(R)
s/sin(78) = 10/sin(48)
s = sin(78)*10/sin(48)
s = 13.162274
<h3>Answer: 13.162274 approximately</h3>
=============================================================
Problem 6
Use the Law of Sines here as well.
x/sin(X) = y/sin(Y)
x/sin(53) = 6/sin(22)
x = sin(53)*6/sin(22)
x = 12.791588
<h3>Answer: 12.791588 approximately</h3>
Step-by-step explanation:
-3+m/9=10
m/9=10+3
m/9=13
m=13×9
m=117
<u>N</u><u>o</u><u>t</u><u>e</u><u>:</u><u>i</u><u>f</u><u> </u><u>y</u><u>o</u><u>u</u><u> </u><u>n</u><u>e</u><u>e</u><u>d</u><u> </u><u>t</u><u>o</u><u> </u><u>a</u><u>s</u><u>k</u><u> </u><u>a</u><u>n</u><u>y</u><u> </u><u>question</u><u> </u><u>please</u><u> </u><u>let</u><u> </u><u>me</u><u> </u><u>know</u><u>.</u>
<h3>
The dimensions of the given rectangular box are:</h3><h3>
L = 15.874 cm , B = 15.874 cm , H = 7.8937 cm</h3>
Step-by-step explanation:
Let us assume that the dimension of the square base = S x S
Let us assume the height of the rectangular base = H
So, the total area of the open rectangular box
= Area of the base + 4 x ( Area of the adjacent faces)
= S x S + 4 ( S x H) = S² + 4 SH ..... (1)
Also, Area of the box = S x S x H = S²H
⇒ S²H = 2000
Substituting the value of H in (1), we get:
Now, to minimize the area put :
Putting the value of S = 15.874 cm in the value of H , we get:
Hence, the dimensions of the given rectangular box are:
L = 15.874 cm
B = 15.874 cm
H = 7.8937 cm
Answer:0=12
Step-by-step explanation:
Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation:
3x-7=3x-5
Combine like terms:
3x-3x=7+5
0=12
Answer:
6 < x ≤ 20
Step-by-step explanation:
First, let's use the points (0, 50) and (20, 0) to find the equation of the line.
m = Δy / Δx
m = (0 − 50) / (20 − 0)
m = -2.5
y = -2.5x + 50
Now find the time when y = 35.
35 = -2.5x + 50
-15 = -2.5x
x = 6
So there is less than 35 gallons in the barrel when 6 < x ≤ 20.