------------------------------------------------------------------------------------------
Equation
------------------------------------------------------------------------------------------
y = -3x - 9
------------------------------------------------------------------------------------------
Option 1
------------------------------------------------------------------------------------------
If I substitute x = -9, I should get y = 0
When x = -9
y = -3 (-9) - 9
= 18 (I did not get 0, wrong)
------------------------------------------------------------------------------------------
Option 2
------------------------------------------------------------------------------------------
If I substitute x = -3, I should get y = 0
y = -3(-3) - 9
y = 9 - 9
y = 0 (Yes, I got 0, correct)
------------------------------------------------------------------------------------------
Option 3
------------------------------------------------------------------------------------------
If I substitute x = 0, I should get y = -3
y = -3 (0) - 9
y = 0 - 9
y = -9 (I did not get -3, wrong)
------------------------------------------------------------------------------------------
Option 4
------------------------------------------------------------------------------------------
If I substitute x = 0, I should get y = -9
y = -3 (0) - 9
y = 0 - 9
y = -9 (Yes, I got -9, correct)
------------------------------------------------------------------------------------------
Answer: (-3, 0) and (0, 9) are ordered pairs of the equation (Answer B, D)
------------------------------------------------------------------------------------------
Answer:
d³y/dx³ = (-2xy² − 3x³ − 4xy²) / (8y⁵)
Step-by-step explanation:
d²y/dx² = (-2y² − x²) / (4y³)
Take the derivative (use quotient rule and chain rule):
d³y/dx³ = [ (4y³) (-4y dy/dx − 2x) − (-2y² − x²) (12y² dy/dx) ] / (4y³)²
d³y/dx³ = [ (-16y⁴ dy/dx − 8xy³ − (-24y⁴ dy/dx − 12x²y² dy/dx) ] / (16y⁶)
d³y/dx³ = (-16y⁴ dy/dx − 8xy³ + 24y⁴ dy/dx + 12x²y² dy/dx) / (16y⁶)
d³y/dx³ = ((8y⁴ + 12x²y²) dy/dx − 8xy³) / (16y⁶)
d³y/dx³ = ((2y² + 3x²) dy/dx − 2xy) / (4y⁴)
Substitute:
d³y/dx³ = ((2y² + 3x²) (-x / (2y)) − 2xy) / (4y⁴)
d³y/dx³ = ((2y² + 3x²) (-x) − 4xy²) / (8y⁵)
d³y/dx³ = (-2xy² − 3x³ − 4xy²) / (8y⁵)
The gardener will need to buy 60 feet of fencing. Because the square root of 225 if 15, and 15 times 4 is 60. So, 60 is the perimeter of the garden.
The value of constant a is -5
Further explanation:
We will use the comparison of co-efficient method for finding the value of a
So,
Given

As it is given that
(x^2 - 3x + 4)(2x^2 +ax + 7) = 2x^4 -11x^3 +30x^2 -41x +28
In this case, co-efficient of variables will be equal, so we can compare the coefficients of x^3, x^2 or x
Comparing coefficient of x^3

So the value of constant a is -5
Keywords: Polynomials, factorization
Learn more about factorization at:
#LearnwithBrainly
3x^0 (2x^3y^2)^4
--------------------------
(4x^7y^4) ^2
= 3 * 1 (2x^3y^2)^4
-------------------------- Zero Exponent Property X^0 =1
(4x^7y^4) ^2
3 (2^4 *x^3*4 y^2*4)
-------------------------- power of a power property x^a ^b = x^(a*b)
4^2 x^7*2 y^4*2
3 *16 *x^12 y^8
-------------------------- simplify
16 x^14 y^8
3 *x^12 y^8
-------------------------- simplify
x^14 y^8
3 *x^(12-14) y^(8-8)
-------------------------- Quotient of Power X^a/ X^b = X^ (a-b)
3x^-2 y^0 simplify
3x^-2 *1 Zero Exponent Property X^0 =1
3 / x^2 Negative exponent property x^-a = 1/x^a