1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slava [35]
3 years ago
8

Why 3 is correct answer

Mathematics
1 answer:
rosijanka [135]3 years ago
3 0
Because they meet in a right angle
You might be interested in
Find the interest due on $600 at 9.5% for 120 days.
KATRIN_1 [288]

Answer:

Interest= $ 18.73

Step-by-step explanation:

Given : $600 at 9.5% for 120 days

To find : Find the interest due

Solution :

Simple interest formula  I=P\times r\times t

Principle(P)=$600 , rate(r)=9.5%=0.095 , time (t)= 120 days

In years, 1 year = 365 days

1 day = \frac{1}{365} year

120 days = \frac{120}{365} year

Put values in the formula

I=P\times r\times t

I=600\times 0.095\times\frac{120}{365}

 I=\frac{6840}{365}=18.73

Therefore, Interest= $ 18.73




5 0
2 years ago
Read 2 more answers
60 % of 80 ASAP pls bruuh
Sati [7]

Answer:

48

Step-by-step explanation:

just ask siri

7 0
3 years ago
Differentiate with respect to X <br><img src="https://tex.z-dn.net/?f=%20%5Csqrt%7B%20%5Cfrac%7Bcos2x%7D%7B1%20%2Bsin2x%20%7D%20
Mice21 [21]

Power and chain rule (where the power rule kicks in because \sqrt x=x^{1/2}):

\left(\sqrt{\dfrac{\cos(2x)}{1+\sin(2x)}}\right)'=\dfrac1{2\sqrt{\frac{\cos(2x)}{1+\sin(2x)}}}\left(\dfrac{\cos(2x)}{1+\sin(2x)}\right)'

Simplify the leading term as

\dfrac1{2\sqrt{\frac{\cos(2x)}{1+\sin(2x)}}}=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}

Quotient rule:

\left(\dfrac{\cos(2x)}{1+\sin(2x)}\right)'=\dfrac{(1+\sin(2x))(\cos(2x))'-\cos(2x)(1+\sin(2x))'}{(1+\sin(2x))^2}

Chain rule:

(\cos(2x))'=-\sin(2x)(2x)'=-2\sin(2x)

(1+\sin(2x))'=\cos(2x)(2x)'=2\cos(2x)

Put everything together and simplify:

\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{(1+\sin(2x))(-2\sin(2x))-\cos(2x)(2\cos(2x))}{(1+\sin(2x))^2}

=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{-2\sin(2x)-2\sin^2(2x)-2\cos^2(2x)}{(1+\sin(2x))^2}

=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{-2\sin(2x)-2}{(1+\sin(2x))^2}

=-\dfrac{\sqrt{1+\sin(2x)}}{\sqrt{\cos(2x)}}\dfrac{\sin(2x)+1}{(1+\sin(2x))^2}

=-\dfrac{\sqrt{1+\sin(2x)}}{\sqrt{\cos(2x)}}\dfrac1{1+\sin(2x)}

=-\dfrac1{\sqrt{\cos(2x)}}\dfrac1{\sqrt{1+\sin(2x)}}

=\boxed{-\dfrac1{\sqrt{\cos(2x)(1+\sin(2x))}}}

5 0
3 years ago
What is the solution to this equation? x + (- 14) = 4. (A) x = 10. (B) x = - 10. (C) x = - 18. (D) x = 18
Vika [28.1K]
First, you want to get x by itself on one side. We write the equation as x-14=4. Since 14 is being subtracted from x, we add it to both sides to cancel it out, x-14+14=4+14 or x=18.

Your answer would be D.

4 0
3 years ago
Find the least common multiple of the set of numbers
stich3 [128]

Answer:

72

Step-by-step explanation:

plz mark brainliest :D

7 0
3 years ago
Other questions:
  • Are all parallelograms squares?
    15·2 answers
  • Paul opens a savings account with $350. He saves $150 per month. Assume that he does not withdraw money or make any additional d
    14·1 answer
  • Greatest common factor of 21,30
    6·2 answers
  • Given the following function, find f(-4), f(0), and f(4).
    13·1 answer
  • Based on the dotplot of the simulation results and the
    12·1 answer
  • Which expression correctly represents 10 less than a number cubed?
    7·2 answers
  • Find the slope of the line through each pair of points. (2,5) and (6, 8)
    7·1 answer
  • Find the value of sin(a/2) if cosa= 12/13<br>​
    13·1 answer
  • Pls help this test is timed
    14·1 answer
  • FREE 50 POINTS GIVEAWAY!!!<br><br> WRITE WHATEVER YOU WANT IN THE ANSWER AND EARN MORE POINTS!
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!