By applying algebraic handling on the two equations, we find the following three <em>solution</em> pairs: x₁ ≈ 5.693 ,y₁ ≈ 10.693; x₂ ≈ 1.430, y₂ ≈ 6.430; x₃ ≈ - 0.737, y₃ ≈ 4.263.
<h3>How to solve a system of equations</h3>
In this question we have a system formed by a <em>linear</em> equation and a <em>non-linear</em> equation, both with no <em>trascendent</em> elements and whose solution can be found easily by algebraic handling:
x - y = 5 (1)
x² · y = 5 · x + 6 (2)
By (1):
y = x + 5
By substituting on (2):
x² · (x + 5) = 5 · x + 6
x³ + 5 · x² - 5 · x - 6 = 0
(x + 5.693) · (x - 1.430) · (x + 0.737) = 0
There are three solutions: x₁ ≈ 5.693, x₂ ≈ 1.430, x₃ ≈ - 0.737
And the y-values are found by evaluating on (1):
y = x + 5
x₁ ≈ 5.693
y₁ ≈ 10.693
x₂ ≈ 1.430
y₂ ≈ 6.430
x₃ ≈ - 0.737
y₃ ≈ 4.263
By applying algebraic handling on the two equations, we find the following three <em>solution</em> pairs: x₁ ≈ 5.693 ,y₁ ≈ 10.693; x₂ ≈ 1.430, y₂ ≈ 6.430; x₃ ≈ - 0.737, y₃ ≈ 4.263.
To learn more on nonlinear equations: brainly.com/question/20242917
#SPJ1
Answer: C. 84
Step-by-step explanation:
In triangles ABD y BCD:
- AD=CD
- Angle BAD = angle BCD
- BD common side
THEN the triangles are equal because they have two sides and the angle opposite the longest side respectively equal.
CBD = ABD = 42 because the triangles ABD y BCD are equal
ABC = CBD+ABD = 42+42= 84
Line 1 to 2: Commutative Property of Multiplication, because all that changed was the order of the things being multiplied.
Line 2 to 3: Commutative Property of *Addition*, because all that changed was the order of the things being added.
All that changed in either step was the ordering of the things being multiplied or added. That’s the commutative property.
Answer:
true
Step-by-step explanation: