1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valkas [14]
3 years ago
15

What is f(3) if f(x) =2x+6

Mathematics
2 answers:
xeze [42]3 years ago
8 0
F(3) = 2(3)+6
f(3)= 6+6
f(3)=12

Hope this helps!
KiRa [710]3 years ago
7 0
Replace f(x) with y
Y=2x-6

Interchange the variables
X=2y-6

Solve for y
Y=3+x/2

F to the negative 1st power (x)=3+x/2
You might be interested in
I need help please :)
kumpel [21]
20² = (8 + 8)² + x²
x = 12
-
the missing side has a value of 12, found using pythagorean theorem
6 0
3 years ago
Which of these graphs represents a function
vagabundo [1.1K]

Answer:

There is no picture though :/

4 0
3 years ago
Read 2 more answers
Choose the correct simplification of the expression 3b/a-2
Goshia [24]
To solving with their equation and expression to step by step.

3b/a-2

= -2a+3b/a


4 0
2 years ago
Read 2 more answers
Given that triangle ABC is a right triangle, select a set of possible side length measurements
Elza [17]

Answer:

4,5,6 / 6,8,10 / 5,12,13 / ....

Step-by-step explanation:

Base on the pythagorean theorem, we have : a² + b² = c².
The first set : 4,5,6 - 4² + 5² = 6² (a possible set)
The second set : 6² + 8² = 10² (another possible set)
The last set : 5² + 12² = 13² (also possible)

There are a lot more sets, but I'll only list 3. Hope this helps :)

3 0
2 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
Other questions:
  • How do you make 1718 using only hundreds tens and ones blocks in two different ways
    12·1 answer
  • Can someone please help pleaseeee!!!
    13·1 answer
  • Please help<br> It says (a^9 b^5 c^8)^2
    14·1 answer
  • Pythagorean Theorem<br> a = ? b = 7 c = 13
    6·1 answer
  • What is the surface area of this design?
    6·2 answers
  • Y = 4 + 6x<br> Siope-interce<br> What linear equation form is this equation written in?
    8·1 answer
  • Change to a percent rounded to the nearest hundredth of a percent if necessary. 1 1/4, 3/5, 5/8, 1/3, 2/7
    11·1 answer
  • HELP
    12·2 answers
  • Jazmine is picking an outfit to wear to a party. She has 5 pairs of pants, 7 shirts, and 4 pairs of shoes to choose from. The nu
    6·1 answer
  • Write forty-six thousandth bas a decimal
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!