Q1. The answer is 1.
It can be calculated using the equation:
(1/2)ⁿ = x
x - decimal amount remaining,
n - a number of half-lives.
x = 50% = 50/100 = 0.5
n = ?
(1/2)ⁿ = 0.5
log((1/2)ⁿ) = log(0.5)
n * log(1/2) = log(0.5)
n * log(0.5) = log(0.5)
n = log(0.5)/log(0.5)
n = 1
Q10. The answer is 2.
It can be calculated using the equation:
(1/2)ⁿ = x
x - decimal amount remaining,
n - a number of half-lives.
Rhyolite #2 has 25% of the parent H remaining:
x = 25% = 25/100 = 0.25
n = ?
(1/2)ⁿ = 0.25
log((1/2)ⁿ) = log(0.25)
n * log(1/2) = log(0.25)
n * log(0.5) = log(0.25)
n = log(0.25)/log(0.5)
n = -0.602 / - 0.301
n = 2
Q3. The answer is 100 million years.
A number of half-lives (n) is a quotient of total time elapsed (t) and length of half-life (H):
n = t/H
n = 1
t = ?
H = 100 000 000 years
n = t/H
t = n * H
t = 1 * 100 000 000 years
t = 100 000 000 years<span>
</span>
Answer:
Tt and tt
Explanation:
To solve this just work backwards. The first box has Tt so one parent has to have T and the other t. Since the tall plant is on the top, it is T_ and t_. Next use the second box (tt). They are both t so the final answer is Tt x tt.
Learning that occurs
when an organism makes a connection between two events is called "Associative
learning".<span>
The process involves associating various details or events to
learn a particular fact or information. For example one cannot imagine one eye
of his/her father, whenever he/she will imagine the whole face of their father
will make sense to mind and not single eye.</span>
Actually the answer is none of the answers
They are all transfer of heat in many ways
Answer:
sufficient root system that can support the plant's growth