Answer:
<em><u>Copper </u></em><em><u>(</u></em><em><u>Cu2)</u></em><em><u> </u></em><em><u>,</u></em><em><u> </u></em><em><u>Iron </u></em><em><u>(</u></em><em><u>Fe2+</u></em><em><u> </u></em><em><u>Fe3 </u></em><em><u>+</u></em><em><u>)</u></em><em><u> </u></em><em><u>,</u></em><em><u> </u></em><em><u>and </u></em><em><u>Hydrogen </u></em><em><u>ion </u></em><em><u>(</u></em><em><u>H+</u></em><em><u>)</u></em>
Explanation:
I hope it helps u dear! ^_^
<span>1.16 moles/liter
The equation for freezing point depression in an ideal solution is
ΔTF = KF * b * i
where
ΔTF = depression in freezing point, defined as TF (pure) ⒠TF (solution). So in this case ΔTF = 2.15
KF = cryoscopic constant of the solvent (given as 1.86 âc/m)
b = molality of solute
i = van 't Hoff factor (number of ions of solute produced per molecule of solute). For glucose, that will be 1.
Solving for b, we get
ΔTF = KF * b * i
ΔTF/KF = b * i
ΔTF/(KF*i) = b
And substuting known values.
ΔTF/(KF*i) = b
2.15âc/(1.86âc/m * 1) = b
2.15/(1.86 1/m) = b
1.155913978 m = b
So the molarity of the solution is 1.16 moles/liter to 3 significant figures.</span>
Different forms of matter have different melting/boiling points. For example, at 100 degrees Celsius, H2O (water) will turn from lliquid to gas. But NaOH (table salt) doesn't even go from solid to liquid until some 800 degrees Celsius. So, in order to figure out which state matter is at 35 Celsius, you'd have to be more specific about what kind of matter...