The half-reaction are:
Cd ---> Cd(OH)₂
The oxidation number of Cd changed from 0 to +2. So, the number of mol electron transferred here is 2.
NiO(OH) --> Ni(OH)₂
The oxidation number of Cd changed from +3 to +2. So, the number of mol electron transferred here is 1.
Now, the greatest common factor would be 2. So, we use n=2 for the formula for ΔG°. F is Faraday's constant equal to 96,485 J/mol e.
ΔG° = nFE° = (2)(96,485)(1.5) =<em> 289,455 J</em>
A homogenous mixture is uniform and thus hard to recognize as a mixture. An example is water.
Answer:
1.58x10⁻⁵
2.51x10⁻⁸
0.0126
63.10
Explanation:
Phenolphthalein acts like a weak acid, so in aqueous solution, it has an acid form HIn, and the conjugate base In-, and the pH of it can be calculated by the Handerson-Halsebach equation:
pH = pKa + log[In-]/[HIn]
pKa = -logKa, and Ka is the equilibrium constant of the dissociation of the acid. [X] is the concentrantion of X. Thus,
i) pH = 4.9
4.9 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = - 4.8
[In-]/[HIn] = 
[In-]/[HIn] = 1.58x10⁻⁵
ii) pH = 2.1
2.1 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = -7.6
[In-]/[HIn] = 
[In-]/[HIn] = 2.51x10⁻⁸
iii) pH = 7.8
7.8 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = -1.9
[In-]/[HIn] = 
[In-]/[HIn] = 0.0126
iv) pH = 11.5
11.5 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = 1.8
[In-]/[HIn] = 
[In-]/[HIn] = 63.10
Answer:
Explanation:
A tertiary alcohol is a compound (an alcohol) in which the carbon atom that has the hydroxyl group (-OH) is also bonded (saturated) to three different carbon atoms.
Based on the question, the only <u>tertiary alcohol that can result from C₆H₁₄O that have a 4-carbon chain</u> is
2-hydroxy-2,3-dimethylbutane
H OH H H
| | | |
H - C - C - C - C - H
| | | |
H CH₃ CH₃ H
From the above, we can see that the carbon atom having the hydroxyl group is also bonded to three other carbon atoms. And since we aren't considering stereochemistry, this is the only tertiary alcohol we can have with a 4-carbon chain
Answer:
2 only is a pretty accurate answer the others dont make sense to me.
Explanation: