The answer would be 6x(5x-2).
Since both terms have x in them, x will be apart of your answer.
The GCF of 12 and 30 is 6.
So you can factor out 6x from both terms.
Hope this helps!
Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ
Use the Sum/Difference Identities:
sin(α + β) = sinα · cosβ + cosα · sinβ
cos(α - β) = cosα · cosβ + sinα · sinβ
Use the Unit circle to evaluate: sin45 = cos45 = √2/2
Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ
Use the Pythagorean Identity: cos²Ф + sin²Ф = 1
<u />
<u>Proof LHS → RHS</u>
LHS: 2sin(45 + 2A) · cos(45 - 2A)
Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)
Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]
Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]
Distribute: cos²2A + 2cos2A·sin2A + sin²2A
Pythagorean Identity: 1 + 2cos2A·sin2A
Double Angle: 1 + sin4A
LHS = RHS: 1 + sin4A = 1 + sin4A 
<h3>
Answer: True</h3>
Explanation:
Technically you could isolate any variable you wanted, from either equation. However, convention is to pick the variable in which isolating it is easiest, and most efficient.
The key thing to look for is if there's a coefficient of 1. This is found in the second equation for the y term. Think of -4x+y = -13 as -4x+1y = -13. Due to the coefficient of 1, when solving for y we won't involve messy fractions.
If you were to solve for y, then you'd get y = 4x-13, which is then plugged in (aka substituted) into the first equation. That allows you to solve for x. Once you know x, you can determine y.
Three different dimensions To answer your question are:
200 pixels by 48 pixels
300 pixels by 72 pixels
400 pixels by 96 pixels
Correct: m,b,c
incorrect: a,n,c
it’s hard to explain