1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elixir [45]
3 years ago
8

Can you cut a pizza into eleven pieces using exactly four straight cuts?

Mathematics
1 answer:
Anastaziya [24]3 years ago
6 0
I hope this helps :)

You might be interested in
Helllpppp meee fastttt!!!!!! Plzzzzzzz!
serg [7]

Answer:(A) 6/15 9/25

(B) yes they are proportional cause both there highest factors are 3

Step-by-step explanation: Because both there highest factors are 3


8 0
2 years ago
Please help me please please please
Andrei [34K]

Answer:wanna hang

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
HURRRRRRYYYYYYY 1 QUESTION EXPERTS/ACE HELP QUICK!!!!!
MakcuM [25]
I believe the answer is C.
4 0
3 years ago
Solve for x in simplest form (again) You don't need to write out the work for me, you can jus write down the answer you got.
FromTheMoon [43]

Answer:

x = 40/21

Step-by-step explanation:

This should be the right answer...

5 0
3 years ago
Read 2 more answers
Match the expressions with their equivalent simplified expressions.
Tasya [4]

Answer:

\sqrt[4]{\frac{16x^6y^4}{81x^2y^8}}\rightarrow\frac{2x}{3y}\\\sqrt[4]{\frac{81x^2y^{10}}{81x^6y^6}} \rightarrow\frac{3y}{2x}\\\sqrt[3]{\frac{64x^8y^7}{125x^2y^{10}}}\rightarrow\frac{4x^2}{5y}\\\sqrt[5]{\frac{243x^{17}y^{16}}{32x^7y^{21}}}\rightarrow\frac{3x^2}{2y}\\\sqrt[5]{\frac{32x^{12}y^{15}}{243x^7y^{10}}} \rightarrow\frac{2xy}{3}\\\sqrt[4]{\frac{16x^{10}y^{9}}{256x^2y^{17}}}\rightarrow\frac{x}{2y}


Step-by-step explanation:

\sqrt[4]{\frac{16x^6y^4}{81x^2y^8}} =\sqrt[4]{\frac{(2^4)(x^{6-2})(y^{4-8})}{(3^4)}} =\sqrt[4]{\frac{2^4x^4y^{-4}}{3^4}} =\frac{2xy^{-1}}{3}=\frac{2x}{3y}

\sqrt[4]{\frac{81x^2y^{10}}{81x^6y^6}} =\sqrt[4]{\frac{(3^4)(x^{2-6})(y^{10-6})}{(2^4)}} =\sqrt[4]{\frac{3^4x^{-4}y^{4}}{2^4}} =\frac{3x^{-1}y^1}{3}=\frac{3y}{2x}

\sqrt[3]{\frac{64x^8y^7}{125x^2y^{10}}} =\sqrt[3]{\frac{(4^3)(x^{8-2})(y^{7-10})}{(5^3)}} =\sqrt[3]{\frac{4^3x^6y^{-3}}{5^3}} =\frac{4x^2y^{-1}}{5}=\frac{4x^2}{5y}

\sqrt[5]{\frac{243x^{17}y^{16}}{32x^7y^{21}}} =\sqrt[5]{\frac{(3^5)(x^{17-7})(y^{16-21})}{(2^5)}} =\sqrt[5]{\frac{3^5x^{10}y^{-5}}{2^5}} =\frac{3x^2y^{-1}}{2}=\frac{3x^2}{2y}

\sqrt[5]{\frac{32x^{12}y^{15}}{243x^7y^{10}}} =\sqrt[5]{\frac{(2^5)(x^{12-7})(y^{15-10})}{(3^5)}} =\sqrt[5]{\frac{2^5x^{5}y^{5}}{3^5}} =\frac{2x^1y^{1}}{3}=\frac{2xy}{3}

\sqrt[4]{\frac{16x^{10}y^{9}}{256x^2y^{17}}} =\sqrt[4]{\frac{(2^4)(x^{10-2})(y^{9-17})}{(4^4)}} =\sqrt[4]{\frac{2^4x^{8}y^{-8}}{4^4}} =\frac{2x^{1}y^{-1}}{4}=\frac{x}{2y}

Thus,

\sqrt[4]{\frac{16x^6y^4}{81x^2y^8}}\rightarrow\frac{2x}{3y}\\\sqrt[4]{\frac{81x^2y^{10}}{81x^6y^6}} \rightarrow\frac{3y}{2x}\\\sqrt[3]{\frac{64x^8y^7}{125x^2y^{10}}}\rightarrow\frac{4x^2}{5y}\\\sqrt[5]{\frac{243x^{17}y^{16}}{32x^7y^{21}}}\rightarrow\frac{3x^2}{2y}\\\sqrt[5]{\frac{32x^{12}y^{15}}{243x^7y^{10}}} \rightarrow\frac{2xy}{3}\\\sqrt[4]{\frac{16x^{10}y^{9}}{256x^2y^{17}}}\rightarrow\frac{x}{2y}

3 0
3 years ago
Other questions:
  • Please explain asap, will give brainliest!!
    5·1 answer
  • Which Benchmark angles multiples of 30 degrees or 45 are closest to the rotation angles below?plz help
    13·1 answer
  • Solve the equation t/2+7=15
    10·2 answers
  • Most road and racing bicycles today use 622 mm diameter rims.  Write and expression which would solve for the circumference of t
    15·1 answer
  • Simplify:<br> 4y–7+ – 9y+9y
    5·2 answers
  • WILL GIVE BRAINLIST PLEASE HELP im very confused ​
    12·2 answers
  • Explain how solving -7y &gt; 161 is different from solving 7y &gt; -161.
    14·1 answer
  • Help I NEED HELP<br> PLS THIS NEED TO BE CHECKED TOMORROW I HOPE THERES SOMEONE WILL HELP (MATH)
    11·1 answer
  • A question abouts angles
    15·1 answer
  • What type of number is 12.25-5i
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!