Answer:
D
Step-by-step explanation:
9514 1404 393
Eexplanation:
16. Suppose the roots are α and kα. Then we can write the equation as ...
a(x -α)(x -kα) = 0
ax² -ax(α +kα) +akα² = 0
Comparing to the original equation, we can equate coefficients to get ...
Solving the first for α gives ...
α = -b/(a(1+k)
Substituting into the second, we have ...
c = ak(-b/(a(1+k)))²
Multiplying by a(1+k)², we get ...
(1+k)²ac = kb²
Using k=2 gives ...
9ac = 2b² . . . . . as required
__
17. Using the previous result with k=1 (equal roots), we have ...
(1+k)²ac = kb²
4ac = b² . . . . . for k=1
______
<em>Additional comment</em>
We observed that the problems were similar, but had different factors relating the roots. So, we elected to solve the general case, then fill in the specific values for the two problems.
Answer:
x = 12
Step-by-step explanation:
6 (x - 10)= 3 (x - 8)
6x - 60 = 3x - 24
6x - 3x = 60 - 24
3x = 36
x = 36/3
x = 12
Answer:
Step-by-step explanation:
Score on SAT Verbal Test
Answer: The value of y is
.
Explanation:
It is given that the graph of a proportional relationship passes through (12, 16)
and (1, y).
The graph of a proportional relationship means the x and y coordinates are in a proportion k. The equation of the graph is in the form of y=kx. Where k is the proportion factor.
It is given that the graph passing through (12,16).




So the equation of the line is,

put x=1.


Therefore, the value of y is
.