Answer:
3 times
Step-by-step explanation:
Firstly we calculate the number of minutes between 8 and 11 am
The number of hours is 3 hours
The number of minutes is 180 minutes since 1 hour is 60 minutes
Now out of 180, to know the number of times that they both leave, we need to get the multiples of both between 0 and 180
The multiples are;
60, 120, 180
This means that they leave together 3 times
Answer:
μ = 235.38
σ = 234.54
Step-by-step explanation:
Assuming the table is as follows:
![\left[\begin{array}{cc}Savings&Frequency\\\$0-\$199&339\\\$200-\$399&86\\\$400-\$599&55\\\$600-\$799&18\\\$800-\$999&11\\\$1000-\$1199&8\\\$1200-\$1399&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7DSavings%26Frequency%5C%5C%5C%240-%5C%24199%26339%5C%5C%5C%24200-%5C%24399%2686%5C%5C%5C%24400-%5C%24599%2655%5C%5C%5C%24600-%5C%24799%2618%5C%5C%5C%24800-%5C%24999%2611%5C%5C%5C%241000-%5C%241199%268%5C%5C%5C%241200-%5C%241399%263%5Cend%7Barray%7D%5Cright%5D)
This is an example of grouped data, where a range of values is given rather than a single data point. First, find the total frequency.
n = 339 + 86 + 55 + 18 + 11 + 8 + 3
n = 520
The mean is the expected value using the midpoints of each range.
μ = (339×100 + 86×300 + 55×500 + 18×700 + 11×900 + 8×1100 + 3×1300) / 520
μ = 122400 / 520
μ = 235.38
The variance is:
σ² = [(339×100² + 86×300² + 55×500² + 18×700² + 11×900² + 8×1100² + 3×1300²) − (520×235.38²)] / (520 − 1)
σ² = 55009.7
The standard deviation is:
σ = 234.54
Answer:
Each family spent about 34.25 on dinner
Step-by-step explanation:
$167 - $30 (tip) = 137
137 ÷ 4 (for each family) = 34.25
BUT
if each family is seperate than they each spent about 11.75 on dinner
167 - (30 x 4) = 47
47 ÷ 4 = 11.75
I'm pretty sure the first one is the answer though
Given: lines l and m are parallel, and line t is a transversal.
angle pair result/justification
1 and 2 are equal (vertical angles)
6 and 8 are equal (corresponding angles)
1 and 4 are equal (alternate exterior angles)
4 and 8 are supplementary angles (i.e. add up to 180 degrees, a straight angle)
Note:
alternate angles are on opposite sides of the transversal, and each attached to a different (parallel) line.
If they are both enclosed by the parallel lines, they are alternate interior angles (examples: angles 2 and 3, 6 and 7)
If they are both outside of the two parallel lines, they are alternate exterior angles (examples: angles 1 and 4, 5 and 8)