Answer:
Binomial distribution requires all of the following to be satisfied:
1. size of experiment (N=27) is known.
2. each trial of experiment is Bernoulli trial (i.e. either fail or pass)
3. probability (p=0.14) remains constant through trials.
4. trials are independent, and random.
Binomial distribution can be used as a close approximation, with the usual assumption that a sample of 27 in thousands of stock is representative of the population., and is given by the probability of x successes (defective).
P(x)=C(N,x)*p^x*(1-p)^(n-x)
where N=27, p=0.14, and C(N,x) is the number of combinations of x items out of N.
So we need the probability of <em>at most one defective</em>, which is
P(0)+P(1)
= C(27,0)*0.14^0*(0.86)^(27) + C(27,1)*0.14^1*(0.86^26)
=1*1*0.0170 + 27*0.14*0.0198
=0.0170+0.0749
=0.0919
Is jerome also on stationary bicycle for next 10 minute?? if yes then he burn 125 calories at the average of 5 calorie per minute
Answer:
26 , 10 , 3
Step-by-step explanation:
Any number larger than 2 will work.
Answer:
x = 14
Step-by-step explanation:
Assume your diagram is like the one below.
The intersecting secant angles theorem states, "When two secants intersect outside a circle, the measure of the angle formed is one-half the difference between the far and the near arcs."
For your diagram, that means
![\begin{array}{rcl}m\angle L &=&\dfrac{1}{2} \left(m \widehat {JM} - m\widehat {PQ}\right)\\\\(3x + 13)^{\circ}& = &\dfrac{1}{2} \left[(8x + 48)^{\circ} - (5x - 20)^{\circ}\right]\\\\3x + 13& = &\dfrac{1}{2}(8x + 48 - 5x + 20)\\\\3x + 13& = &\dfrac{1}{2}(3x + 68)\\\\6x + 26 & = & 3x + 68\\6x & = & 3x + 42\\3x & = & 42\\x & = & \mathbf{14}\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7Dm%5Cangle%20L%20%26%3D%26%5Cdfrac%7B1%7D%7B2%7D%20%5Cleft%28m%20%5Cwidehat%20%7BJM%7D%20-%20m%5Cwidehat%20%7BPQ%7D%5Cright%29%5C%5C%5C%5C%283x%20%2B%2013%29%5E%7B%5Ccirc%7D%26%20%3D%20%26%5Cdfrac%7B1%7D%7B2%7D%20%5Cleft%5B%288x%20%2B%2048%29%5E%7B%5Ccirc%7D%20-%20%285x%20-%2020%29%5E%7B%5Ccirc%7D%5Cright%5D%5C%5C%5C%5C3x%20%2B%2013%26%20%3D%20%26%5Cdfrac%7B1%7D%7B2%7D%288x%20%2B%2048%20-%205x%20%2B%2020%29%5C%5C%5C%5C3x%20%2B%2013%26%20%3D%20%26%5Cdfrac%7B1%7D%7B2%7D%283x%20%2B%2068%29%5C%5C%5C%5C6x%20%2B%2026%20%26%20%3D%20%26%203x%20%2B%2068%5C%5C6x%20%26%20%3D%20%26%203x%20%2B%2042%5C%5C3x%20%26%20%3D%20%26%2042%5C%5Cx%20%26%20%3D%20%26%20%5Cmathbf%7B14%7D%5C%5C%5Cend%7Barray%7D)
Check:
![\begin{array}{rcl}(3\times14 + 13) & = &\dfrac{1}{2} \left[(8\times14 + 48)^{\circ} - (5\times14 - 20)^{\circ}\right]\\\\42 + 13& = &\dfrac{1}{2}(112 + 48 - 70 + 20)\\\\55& = &\dfrac{1}{2}(110)\\\\55 & = & 55\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7D%283%5Ctimes14%20%2B%2013%29%20%26%20%3D%20%26%5Cdfrac%7B1%7D%7B2%7D%20%5Cleft%5B%288%5Ctimes14%20%2B%2048%29%5E%7B%5Ccirc%7D%20-%20%285%5Ctimes14%20-%2020%29%5E%7B%5Ccirc%7D%5Cright%5D%5C%5C%5C%5C42%20%2B%2013%26%20%3D%20%26%5Cdfrac%7B1%7D%7B2%7D%28112%20%2B%2048%20-%2070%20%2B%2020%29%5C%5C%5C%5C55%26%20%3D%20%26%5Cdfrac%7B1%7D%7B2%7D%28110%29%5C%5C%5C%5C55%20%26%20%3D%20%26%2055%5C%5C%5Cend%7Barray%7D)
It checks.
Answer:
Step-by-step explanation:
OPTION C - No, because each number drawn is equally likely and independent of the others, so this set of numbers is just as likely as any other in the next drawing.