Answer:
The largest total area that can be enclosed will be a square of length 272 yards.
Step-by-step explanation:
First we get the perimeter of the large rectangular enclosure.
Perimeter of a rectangle =2(l + w)
Perimeter of the large rectangular enclosure= 1088 yard
Therefore:
2(L+W)=1088
The region inside the fence is the area
Area: A = LW
We need to solve the perimeter formula for either the length or width.
2L+ 2W= 1088 yd
2W= 1088– 2L
W = 
W = 544–L
Now substitute W = 544–L into the area formula
A = LW
A = L(544 – L)
A = 544L–L²
Since A is a quadratic expression, we re-write the expression with the exponents in descending order.
A = –L²+544L
Next, we look for the value of the x coordinate


L=272 yards
Plugging L=272 yards into the calculation for area:
A = –L²+544L
A(272)=-272²+544(272)
=73984 square yards
Thus the largest area that could be encompassed would be a square where each side has a length of 272 yards and a width of:
W = 544 – L
= 544 – 272
= 272 yards
This is not right 1 is greater than 0
96 is= 6 that’s the answerrrrr
<h2>Answer:
The line from the question [ y = -8x + 3 ] passes through the point ( -1, 11 ). </h2>
<h3 /><h3>Step-by-step explanation:
</h3>
<u>Find the slope of the parallel line</u>
When two lines are parallel, they have the same slope.
⇒ if the slope of this line = - 8
then the slope of the parallel line (m) = - 8
<u>Determine the equation</u>
We can now use the point-slope form (y - y₁) = m(x - x₁)) to write the equation for this line:
⇒ y - 11 = - 8 (x - (-1))
∴ y - 11 = - 8 (x + 1)
We can also write the equation in the slope-intercept form by making y the subject of the equation and expanding the bracket to simplify:
since y - 11 = - 8 (x + 1)
y = - 8 x + 3
The line from the question [ y = -8x + 3 ] passes through the point ( -1, 11 ).
Answer:
B
Step-by-step explanation:
10 ÷ 8
=0.8
≈1% probability