Answer:
a) Figure attached
b) For this case we want this probability:
![P(X>16)](https://tex.z-dn.net/?f=%20P%28X%3E16%29)
And we can use the complement rule:
![P(X>16) = 1-P(X](https://tex.z-dn.net/?f=P%28X%3E16%29%20%3D%201-P%28X%3C16%29)
And we can use the cumulative distribution function given by:
![F(x)= \frac{x-a}{b-a}, a\leq X \leq b](https://tex.z-dn.net/?f=F%28x%29%3D%20%5Cfrac%7Bx-a%7D%7Bb-a%7D%2C%20a%5Cleq%20X%20%5Cleq%20b)
And replacing we got:
![P(X>16) =1- \frac{16-7.5}{20-7.5} = 1-0.68 = 0.32](https://tex.z-dn.net/?f=P%28X%3E16%29%20%3D1-%20%5Cfrac%7B16-7.5%7D%7B20-7.5%7D%20%3D%201-0.68%20%3D%200.32)
Step-by-step explanation:
For this case we define the random variable X= depth (in centimeters) of the bioturbation layer in sediment for a certain region, and we know the distribution for X, given by:
![X \sim Unif (a=7.5, b=20)](https://tex.z-dn.net/?f=%20X%20%5Csim%20Unif%20%28a%3D7.5%2C%20b%3D20%29)
Part a
For this case we can see the figure attached.
Part b
For this case we want this probability:
![P(X>16)](https://tex.z-dn.net/?f=%20P%28X%3E16%29)
And we can use the complement rule:
![P(X>16) = 1-P(X](https://tex.z-dn.net/?f=P%28X%3E16%29%20%3D%201-P%28X%3C16%29)
And we can use the cumulative distribution function given by:
![F(x)= \frac{x-a}{b-a}, a\leq X \leq b](https://tex.z-dn.net/?f=F%28x%29%3D%20%5Cfrac%7Bx-a%7D%7Bb-a%7D%2C%20a%5Cleq%20X%20%5Cleq%20b)
And replacing we got:
![P(X>16) =1- \frac{16-7.5}{20-7.5} = 1-0.68 = 0.32](https://tex.z-dn.net/?f=P%28X%3E16%29%20%3D1-%20%5Cfrac%7B16-7.5%7D%7B20-7.5%7D%20%3D%201-0.68%20%3D%200.32)