Answer:
y=2e^(−x)cosx−e^(−x)sinx
Satisfies the equation
Step-by-step explanation:
Answer:
y=2e^(−x)cosx−e^(−x)sinx
y = e^(-x)[2cosx - sinx]
Find y' and y" using product law
y' = -e^(-x)[2cosx - sinx] + e^(-x)[-2sinx - cosx]
y' = -e^(-x)[2cosx - sinx + 2sinx + cosx]
y' = -e^(-x)[3cosx + sinx]
y" = e^(-x)[3cosx + sinx] - e^(-x)[-3sinx + cosx]
y" = e^(-x)[3cosx - cosx + sinx + 3sinx]
y" = e^(-x)[2cosx + 4sinx]
y" + 2y' + 2y
e^(-x)[2cosx + 4sinx] - 2e^(-x)[3cosx + sinx] +2e^(-x)[2cosx - sinx]
e^(-x)[4sinx - 2sinx - 2sinx + 2cosx - 6 cosx + 4cosx]
= e^(-x) × 0
= 0
Answer:
5
Step-by-step explanation:
We desire to evaluate the fraction:
when k=3.
This is a simple substitution, so what is required is
- Replace k with the given number
- Simplify the resulting expression
Therefore, when k=3

You can try the same for any value of k.
Hello!
The sum of the intern angles of a triangle is 180°. If an angle is obtuse (bigger than 90°), the sum of the others must be less than 90 degrees. Letter a).
Hugs!
2x -2x - 3 = 2x - 2x - 5 <em>subtract 2x from both sides</em>
-3 = -5 FALSE
<h3>Answer: D) no solution</h3>