Answer:
_5/6 .......is great.......
Answer:
The domain of the given function is
{x | x= -4,-1, 3, 5, 6}
<h3>Given</h3>
tan(x)²·sin(x) = tan(x)²
<h3>Find</h3>
x on the interval [0, 2π)
<h3>Solution</h3>
Subtract the right side and factor. Then make use of the zero-product rule.
... tan(x)²·sin(x) -tan(x)² = 0
... tan(x)²·(sin(x) -1) = 0
This is an indeterminate form at x = π/2 and undefined at x = 3π/2. We can resolve the indeterminate form by using an identity for tan(x)²:
... tan(x)² = sin(x)²/cos(x)² = sin(x)²/(1 -sin(x)²)
Then our equation becomes
... sin(x)²·(sin(x) -1)/((1 -sin(x))(1 +sin(x))) = 0
... -sin(x)²/(1 +sin(x)) = 0
Now, we know the only solutions are found where sin(x) = 0, at ...
... x ∈ {0, π}
Answer:
∠J = 60°
Step-by-step explanation:
The Law of Cosines tells you ...
j² = k² +l² -2kl·cos(J)
Solving for J gives ...
J = arccos((k² +l² -j²)/(2kl))
J = arccos((14² +80² -74²)/(2·14·80)) = arccos(1120/2240) = arccos(1/2)
J = 60°
_____
<em>Additional comment</em>
It is pretty rare to find a set of integer side lengths that result in one of the angles of the triangle being a rational number of degrees.
I assume that the given equation above is 0.9(x+1.4)−2.3+0.1x=1.6 and not 0.9(x+1.4)−2.3+0.1x=1.60.9(x+1.4)−2.3+0.1x=1.6, I think there is a typo error on this. Based on equation I assumed the answer is 2.64.Thank you for posting your question here, I hope my answer helps.