Answer:
1.35 m
Explanation:
Taking down to be positive, given:
Δx = Δy / tan 30.0º
v₀ₓ = 4.50 m/s
v₀ᵧ = 0 m/s
aₓ = 0 m/s²
aᵧ = 10 m/s²
Find: Δy
First, find the time it takes to land in terms of Δy.
Δy = v₀ t + ½ at²
Δy = (0 m/s) t + ½ (10 m/s) t²
Δy = 5t²
Next, find Δx in terms of t.
Δx = v₀ t + ½ at²
Δx = (4.50 m/s) t + ½ (0 m/s) t²
Δx = 4.50t
Substitute:
Δy = 5 (Δx / 4.50)²
20.25 Δy = 5 (Δx)²
4.05 Δy = (Δx)²
4.05 Δy = (Δy / tan 30.0º)²
4.05 Δy = 3 (Δy)²
1.35 = Δy
The basketball was thrown from an initial height of 1.35 m.
Graph: desmos.com/calculator/ujuzdo9xpr
Answer:
resolve shear stress = 22 MPa
Explanation:
Given data
slip plane α = 43.1°
slip directions β = 47.9°
shear stress = 20.7 MPa (3,000 psi)
applied stress =45 mPa (6,500 psi)
to find out
what stress will be necessary
solution
we know that
resolve shear stress = aplied stress × cosα × cosβ
resolve shear stress = 45 × cos(43.1) × cos(47.9)
resolve shear stress = 22 MPa
we can say that here single cristal will be yield
because resolve shear stress is bigger than critical shear stress
The other 4 kg may have left the scene in the form of
gases and smoke particles.
Answer:
Option d
Explanation:
From Maxwell's law, we know that;

where
E = Electric Field
B = Magnetic Field
Also from Lenz Law:
emf, e = -
where
= magnetic flux linkage
Now, in order for the current not to be induced in the loop, option a and c do not hold.
Since from the above equations, variation in both or any of the magnetic and electric fields will result in the induction of current as both are vector.
For the option b, if we rotate the loop about the diameter or increase the size or area of the loop, it will result in the change in its magnetic flux and current will be induced as is clear from the given equation:

Now, in case of option d, if we consider a uniform magnetic field, then there won't be any variation and hence no current will be induced while we slide the wire perpendicular to the loop.
Answer:
E = -1.5 10⁵ N / C
Explanation:
In a capacitor the electric field is uniform between the blades, therefore we use the expression
V = - E s
E = - V / s
let's calculate
E = - 3000 / 0.02
E = -1.5 10⁵ N / C
the sign indicates that the field and the potential are opposite, when one increases the gold decreases