Answer:
The initial speed of the cork was 1.57 m/s.
Explanation:
Hi there!
The equation of the horizontal position of the cork in function of time is the following:
x = x0 + v0 · t · cos θ
Where:
x = horizontal position at time t.
x0 = initial horizontal position.
v0 = initial speed of the cork.
t = time.
θ = launching angle.
If we place the origin of the frame of reference at the launching point, then x0 = 0.
We know that at t = 1.25 s, x = 1.50 m. We also know the launching angle so we can solve the equation of horizontal position for the initial speed, v0:
x = v0 · t · cos θ
x / t · cos θ = v0
v0 = 1.50 m / (1.25 s · cos (40.0°)
v0 = 1.57 m/s
The initial speed of the cork was 1.57 m/s.
Answer:
(a) surface area of the plate will be equal to 
(b) Charge on the capacitor is equal to 
Explanation:
We have given spacing between the plates d = 0.05 mm = 
Value of capacitance 
(A) Capacitance of a parallel plate capacitor is equal to 
So 

So surface area of the plate will be equal to 
(B) It is given that capacitor is charged by 1.5 volt
So voltage V = 1.5 volt
Charge on the capacitor is equal to 
So 
Answer:
d = 69 .57 meter
Explanation:
First case
Speed of car ( v ) = 20.5 mi/h = 9.164 M/S
distance ( d ) = 11.6 meter ( m = mass of the car )
Work done = 0.5 m v² = 0.5 * 9.164² * m J = 41.99 m J
Force = ( workdone /distance ) = ( 41.99 m / 11.6 ) = 3.619 m N
Second case
v = 50.2 mi/h = 22.44135 m/s
d = ?
Work done = 0.5 * 22.44² * m J = 251.7768 * m J
Since the braking force remains the same .
3.619 m = ( 251.7768 m / d )
d = 69 .57 meter
A bowling ball because it is heavier and it has more air force going against it<span />