1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PIT_PIT [208]
3 years ago
5

Paul and tested twice as much money in an account paying 7% interest then he did an account paying 2% interest if the total inte

rest paid less $240 how much did he invest in each
Mathematics
1 answer:
geniusboy [140]3 years ago
7 0
I think this is correct 14% interest and 4% interest
You might be interested in
Statements :
3241004551 [841]

Answer:

"e^x is irrational for every nonzero integer x"

Step-by-step explanation:

The original statement is

"e^x is rational for some nonzero integer x."

The negation is technically:

"It is NOT true that e^x is rational for some nonzero integer x."

So it's expressing that it's false that e^x can be rational for some nonzero integer x.

This just means that e^x is always irrational when x is a nonzero integer.

Which can be worded as

"e^x is irrational for every nonzero integer x"

4 0
3 years ago
A mountain climber descends 3,852 feet over a period of 4 days. What was the average amount of her descent over that period of t
Harrizon [31]
To get the answer, divide 3852 feet by 4 days. That will give you an average of 963 feet per day as your answer.
5 0
3 years ago
Read 2 more answers
One more time!
CaHeK987 [17]
Since q(x) is inside p(x), find the x-value that results in q(x) = 1/4

\frac{1}{4} = 5 - x^2\ \Rightarrow\ x^2 = 5 - \frac{1}{4}\ \Rightarrow\ x^2 = \frac{19}{4}\ \Rightarrow \\
x = \frac{\sqrt{19} }{2}

so we conclude that
q(\frac{\sqrt{19} }{2} ) = 1/4

therefore

p(1/4) = p\left( q\left(\frac{ \sqrt{19} }{2} \right)  \right)

plug x=\sqrt{19}/2 into p( q(x) ) to get answer

p(1/4) = p\left( q\left( \frac{ \sqrt{19} }{2} \right) \right)\ \Rightarrow\ \dfrac{4 - \left(  \frac{\sqrt{19} }{2}\right)^2 }{ \left(  \frac{\sqrt{19} }{2}\right)^3 } \Rightarrow \\ \\ \dfrac{4 - \frac{19}{4} }{ \frac{19\sqrt{19} }{8}} \Rightarrow \dfrac{8\left(4 - \frac{19}{4}\right) }{ 8 \cdot \frac{19\sqrt{19} }{8}} \Rightarrow \dfrac{32 - 38}{19\sqrt{19}} \Rightarrow \dfrac{-6}{19\sqrt{19}} \cdot \frac{\sqrt{19}}{\sqrt{19}}\Rightarrow

\dfrac{-6\sqrt{19} }{19 \cdot 19} \\ \\ \Rightarrow  -\dfrac{6\sqrt{19} }{361}

p(1/4) = -\dfrac{6\sqrt{19} }{361}
3 0
3 years ago
Twice as many students are in the chess club as in the fencing club.The number of students in the fencing club is one fifth the
jekas [21]

Answer:

28 students

Step-by-step explanation:

Let number of students in cooking club = x

Number of students in fencing club = 1/5 x

Number of students in chess club = 2(1/5)x

Since, There are 42 more students in the cooking club than in the chess club

Then ;

Number of students in chess club = Number of students in cooking club - 42

2(1/5)x = x - 42

(2/5)x - x = - 42

(2/5)x - x = - 42

-0.6x = - 42

x = 42 / 0.6

x = 70

Hence, number of students in chess club :

(2/5) * 70 = 28

4 0
3 years ago
Write the next three terms of the following sequence 4,5,7,10,14
Law Incorporation [45]
4,5,7,10,14=19,25, 32
8 0
3 years ago
Other questions:
  • Which is the best approximation for the solution of the system of equations? y = x + 1 y = 3x – 2
    13·2 answers
  • What is the equation of the line in slope-intercept form?
    10·2 answers
  • 3a
    14·1 answer
  • Geometry, Thanks if you help! question 3
    5·1 answer
  • Your coffee bar has two kinds of drink One cup of the first one costs 9 grams of juice , 4 grams of coffee and 3 grams of sugar
    7·1 answer
  • Please help and explain :)
    9·1 answer
  • After 8 hours of snow, the
    6·1 answer
  • Does anyone know the values of x and y? my teacher didn’t go over this type of problem
    15·1 answer
  • Graph the equations to find the solution(s) to the system.
    7·1 answer
  • A straight road makes an angle of 15 degrees with the horizontal. When the angle of elevation of the sun is 57 degrees, a vertic
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!