5h 30m + 6h 6m + 6h 30m = 17 hours and 66 minutes or 18 hours and 6 minutes.
1,110 minutes total.
Hope I helped! :)
Distribute
2(x-1) =3(x-4)
2x -2 =3 (x-4)
Distribute
2x-2 =3 (x-4)
2x-2=3x-12
Add 2 both sides of the equation
2x-2=3x-12
2x-2+2=3x-12+2
Simplify
2x=3x-10
Subtract 3x from both sides of the equation
2x=3x -10
2x -3x =3x -10 -3x
Simplify
-x=-10
Divide both sides of the equation by the same term
-x=-10
-x/-1 / -1 / -10/-1
Simplify
X=10
Answer : x=10
<h2>
Answer:</h2>
The number of kilograms a 19 m beam can support is:
378.9474 kg
<h2>
Step-by-step explanation:</h2>
It is given that:
The weight W that a horizontal beam can support varies inversely as the length L of the beam.
Let k denote the constant.
This means that the weight W and Length L is related as:

Suppose that an 8 dash m beam can support 900 kg.
This means that L=8 and W=900
Then,

Now , we are asked to find the value of W when L= 19
i.e.

Answer:
![P(C=1|T=1)=q(\sum_{i=15}^{20}\binom{20}{i} p^i(1-p)^{20-i})( \sum_{i=15}^{20}\binom{20}{i}[qp^i(1-p)^{20-i} + (1-q)p^{20-i}(1-p)^i])^{-1}](https://tex.z-dn.net/?f=P%28C%3D1%7CT%3D1%29%3Dq%28%5Csum_%7Bi%3D15%7D%5E%7B20%7D%5Cbinom%7B20%7D%7Bi%7D%20p%5Ei%281-p%29%5E%7B20-i%7D%29%28%20%5Csum_%7Bi%3D15%7D%5E%7B20%7D%5Cbinom%7B20%7D%7Bi%7D%5Bqp%5Ei%281-p%29%5E%7B20-i%7D%20%2B%20%281-q%29p%5E%7B20-i%7D%281-p%29%5Ei%5D%29%5E%7B-1%7D)
Step-by-step explanation:
Hi!
Lets define:
C = 1 if candidate is qualified
C = 0 if candidate is not qualified
A = 1 correct answer
A = 0 wrong answer
T = 1 test passed
T = 0 test failed
We know that:

The test consist of 20 questions. The answers are indpendent, then the number of correct answers X has a binomial distribution (conditional on the candidate qualification):

The probability of at least 15 (P(T=1))correct answers is:

We need to calculate the conditional probabiliy P(C=1 |T=1). We use Bayes theorem:

![P(T=1)=q\sum_{i=15}^{20}f_1(i) + (1-q)\sum_{i=15}^{20}f_0(i)\\P(T=1)=\sum_{i=15}^{20}\binom{20}{i}[qp^i(1-p)^{20-i} + (1-q)p^{20-i}(1-p)^i)]](https://tex.z-dn.net/?f=P%28T%3D1%29%3Dq%5Csum_%7Bi%3D15%7D%5E%7B20%7Df_1%28i%29%20%2B%20%281-q%29%5Csum_%7Bi%3D15%7D%5E%7B20%7Df_0%28i%29%5C%5CP%28T%3D1%29%3D%5Csum_%7Bi%3D15%7D%5E%7B20%7D%5Cbinom%7B20%7D%7Bi%7D%5Bqp%5Ei%281-p%29%5E%7B20-i%7D%20%2B%20%281-q%29p%5E%7B20-i%7D%281-p%29%5Ei%29%5D)
![P(C=1|T=1)=q(\sum_{i=15}^{20}\binom{20}{i} p^i(1-p)^{20-i})( \sum_{i=15}^{20}\binom{20}{i}[qp^i(1-p)^{20-i} + (1-q)p^{20-i}(1-p)^i])^{-1}](https://tex.z-dn.net/?f=P%28C%3D1%7CT%3D1%29%3Dq%28%5Csum_%7Bi%3D15%7D%5E%7B20%7D%5Cbinom%7B20%7D%7Bi%7D%20p%5Ei%281-p%29%5E%7B20-i%7D%29%28%20%5Csum_%7Bi%3D15%7D%5E%7B20%7D%5Cbinom%7B20%7D%7Bi%7D%5Bqp%5Ei%281-p%29%5E%7B20-i%7D%20%2B%20%281-q%29p%5E%7B20-i%7D%281-p%29%5Ei%5D%29%5E%7B-1%7D)