Are you tryna solve for x?
Answer:
13.5
Step-by-step explanation:
Answer:
56.44%
Step-by-step explanation:
From the question, we have the following values
% Discount = 3%
Full allowed payment days = 30 days
Discount days = 10 days
1 year = 365 days
The formula for Effective Annual rate or Annual rate in effect =
Discount %/(1-Discount %) x (365 days/(Full allowed payment days - Discount days))
= 3%/(1 - 3%) × (365 days/30 days - 10 days)
= 0.03/(1 - 0.03) × (365/20)
= 0.03/0.97 × (365/20)
= 0.5644329897
Converting to percentage
0.5644329897 × 100
= 56.44329897%
Approximately = 56.44%
Therefore, the annual rate Heidi, in effect, is paying the supplier if she fails to pay the invoice at the end of the discount period is 56.44%
Answer:
f(x) = (-1/2)(x^2 + 8x - 15)
Step-by-step explanation:
This function has two roots: -3 and 5. Most likely it is a quadratic (all of which have two roots).
Then f(x) = a(x + 3)(x - 5)
The graph goes through (1. 8): Therefore, y = 8 when x = 1:
f(1) = a(1 + 3)(1 - 5) = 8, or
a(4)(-4) = 8, or
-16a = 8, which leads to a = -1/2.
Thus the quadratic in question is f(x) = (-1/2)(x + 3)(x - 5), or
f(x) = (-1/2)(x^2 + 8x - 15)