![\bf \textit{vertical parabola vertex form with focus point distance} \\\\ 4p(y- k)=(x- h)^2 \qquad \begin{cases} \stackrel{vertex}{(h,k)}\qquad \stackrel{focus~point}{(h,k+p)}\qquad \stackrel{directrix}{y=k-p}\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix}\\\\ \stackrel{"p"~is~negative}{op ens~\cap}\qquad \stackrel{"p"~is~positive}{op ens~\cup} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvertical%20parabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%204p%28y-%20k%29%3D%28x-%20h%29%5E2%20%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bfocus~point%7D%7B%28h%2Ck%2Bp%29%7D%5Cqquad%20%5Cstackrel%7Bdirectrix%7D%7By%3Dk-p%7D%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22p%22~is~negative%7D%7Bop%20ens~%5Ccap%7D%5Cqquad%20%5Cstackrel%7B%22p%22~is~positive%7D%7Bop%20ens~%5Ccup%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)

something noteworthy is that the squared variable is the "x", thus the parabola is a vertical one, the "p" value is negative, so is opening downwards, and the h,k is pretty much the origin,
vertex is at (0,0)
the focus point is "p" or 5 units down from there, namely at (0, -5)
the directrix is "p" units on the opposite direction, up, namely at y = 5
the focal width, well, |4p| is pretty much the focal width, in this case, is simply yeap, you guessed it, 20.
It is x + (4/5) = 11
It is this because of PEMDAS, if you learned that.
Answer:
Intensity of the vector is v= √37 ≈ 6.08 units and make angle ∡α ≈ 9.46° with east direction
Step-by-step explanation:
Required vector is consists of the two components
vx= 2+4=6 units and vy= 1 unit and vx ⊥ vy
We will use Pythagorian theorem to find intensity of the vector v
v∧2 = vx∧2 + vy∧2 => v = √vx∧2 + vy∧2 = √6∧2 + 1∧2 = √36+1 = √37 ≈ 6.08 units
The angle ∡α between vector and east direction we wil find with tanα
tanα = 1/6 => α = arc tanα = arc 1/6 => α ≈ 9.46°
Good luck!!!
Answer:
72 degrees
Step-by-step explanation:
2x+3x=180
5x=180
x=36
36*2=72
Answer:
mira a las base de las figuras y busca cual base matchs con la figuras de la figura prinsipal
Step-by-step explanation:
como el cono va con la del toda la izquierda de la de la mitad