Answer:
27
Step-by-step explanation:
17 - 8 = 9 people came
The number of presents brought is 3×9 = 27.
Jackie got 27 presents.
Answer:
11.6--------------------------------------
Explanation:
See the attached image for a visual reference
The distance from point D to E is 21 units. Point C is the midpoint, so CD is 10.5 units long (21/2 = 10.5)
We have a right triangle ACD. The legs are
AC = 5
CD = 10.5
The hypotenuse is
AD = x
Because AD is another radius of the same circle
Use the pythagorean theorem to find x
a^2 + b^2 = c^2
5^2 + 10.5^2 = x^2
25 + 110.25 = x^2
135.25 = x^2
x^2 = 135.25
x = sqrt(135.25)
x = 11.629703349613
which rounds to
11.6 when rounding to the nearest tenth (one decimal place)
Answer:
![\boxed{\sf P = \frac{2Z}{s} - p}](https://tex.z-dn.net/?f=%20%5Cboxed%7B%5Csf%20P%20%3D%20%5Cfrac%7B2Z%7D%7Bs%7D%20-%20p%7D%20)
Step-by-step explanation:
![\sf Solve \ for \ P: \\ \sf \implies Z = \frac{s}{2} (P + p) \\ \\ \sf Z = \frac{s}{2} (P + p) \ is \ equivalent \ to \ \frac{s}{2} (P + p) = Z: \\ \sf \implies \frac{s}{2} (P + p) = Z \\ \\ \sf Divide \ both \ sides \ by \ \frac{s}{2} : \\ \sf \implies P + p = \frac{2Z}{s} \\ \\ \sf Substrate \ p \ from \ both \ sides: \\ \sf \implies P = \frac{2Z}{s} - p](https://tex.z-dn.net/?f=%5Csf%20Solve%20%5C%20for%20%5C%20P%3A%20%5C%5C%20%5Csf%20%5Cimplies%20%20Z%20%3D%20%5Cfrac%7Bs%7D%7B2%7D%20%28P%20%2B%20p%29%20%5C%5C%20%5C%5C%20%5Csf%20Z%20%3D%20%5Cfrac%7Bs%7D%7B2%7D%20%28P%20%2B%20p%29%20%5C%20is%20%5C%20equivalent%20%5C%20to%20%5C%20%5Cfrac%7Bs%7D%7B2%7D%20%28P%20%2B%20p%29%20%3D%20Z%3A%20%5C%5C%20%5Csf%20%5Cimplies%20%5Cfrac%7Bs%7D%7B2%7D%20%28P%20%2B%20p%29%20%3D%20Z%20%5C%5C%20%5C%5C%20%20%5Csf%20Divide%20%5C%20both%20%5C%20sides%20%5C%20by%20%5C%20%5Cfrac%7Bs%7D%7B2%7D%20%3A%20%5C%5C%20%5Csf%20%5Cimplies%20P%20%2B%20p%20%3D%20%5Cfrac%7B2Z%7D%7Bs%7D%20%5C%5C%20%5C%5C%20%5Csf%20Substrate%20%5C%20p%20%5C%20from%20%5C%20both%20%5C%20sides%3A%20%5C%5C%20%5Csf%20%5Cimplies%20P%20%3D%20%5Cfrac%7B2Z%7D%7Bs%7D%20-%20p)
Answer + Step-by-step explanation:
the inequality by finding the boundary line, then shading the appropriate area.
y > − 5/2x − 5
(anything in shaded region)