The formation of chemical bonds occurs due to the attractive forces between oppositely charged ions (ionic bonds) or by sharing of electrons (covalent bonds).
An atom having tendency of attracting a shared pair of electrons towards itself and this chemical property is said to Electronegativity .
Thus, the attractive forces which draws in surrounding electrons for chemical bonds is electronegativity.
<u>Answer:</u> The entropy change of the ethyl acetate is 133. J/K
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

Given mass of ethyl acetate = 398 g
Molar mass of ethyl acetate = 88.11 g/mol
Putting values in above equation, we get:

To calculate the entropy change for different phase at same temperature, we use the equation:

where,
= Entropy change = ?
n = moles of ethyl acetate = 4.52 moles
= enthalpy of fusion = 10.5 kJ/mol = 10500 J/mol (Conversion factor: 1 kJ = 1000 J)
T = temperature of the system = ![84.0^oC=[84+273]K=357K](https://tex.z-dn.net/?f=84.0%5EoC%3D%5B84%2B273%5DK%3D357K)
Putting values in above equation, we get:

Hence, the entropy change of the ethyl acetate is 133. J/K
<span>The chemical mixture that composes our atmosphere is called Synopt.</span>
Answer:
320 g
Step-by-step explanation:
The half-life of Co-63 (5.3 yr) is the time it takes for half of it to decay.
After one half-life, half (50 %) of the original amount will remain.
After a second half-life, half of that amount (25 %) will remain, and so on.
We can construct a table as follows:
No. of Fraction Mass
half-lives t/yr Remaining Remaining/g
0 0 1
1 5.3 ½
2 10.6 ¼
3 15.9 ⅛ 40.0
4 21.2 ¹/₁₆
We see that 40.0 g remain after three half-lives.
This is one-eighth of the original mass.
The mass of the original sample was 8 × 40 g = 320 g