Given the equation, S = D/T:
To make the D the subject of the equation, we can start by multiplying both sides by T to isolate D:
(T) S = D/T (T)
TS = D
Therefore, the final answer is D = TS
Answer:
The sum of the squares of two numbers whose difference of the squares of the numbers is 5 and the product of the numbers is 6 is <u>169</u>
Step-by-step explanation:
Given : the difference of the squares of the numbers is 5 and the product of the numbers is 6.
We have to find the sum of the squares of two numbers whose difference and product is given using given identity,

Since, given the difference of the squares of the numbers is 5 that is 
And the product of the numbers is 6 that is 
Using identity, we have,

Substitute, we have,

Simplify, we have,


Thus, the sum of the squares of two numbers whose difference of the squares of the numbers is 5 and the product of the numbers is 6 is 169
I am certain it is
200g butter
300g flour
400g sugar
Answer:
-46
Step-by-step explanation:
We need to find the common difference of this arithmetic sequence:

So, the common difference d = -4. We can now write the equation:


So, the 15th term is -46.
Hope this helps!