Answer:
The 99% of a confidence interval for the average maximum HP for the experimental engine.
(536.46, 603.54)
Step-by-step explanation:
<u><em>Step:-1</em></u>
Given that the mean of the Population = 540HP
Given that the size of the sample 'n' = 9
Given that the mean of the sample = 570HP
Given that the sample standard deviation = 30HP
<u><em>Step(ii):-</em></u>
<u><em>Degrees of freedom = n-1 =9-1 =8</em></u>
<u><em>t₀.₀₀₅ = 3.3554</em></u>
The 99% of a confidence interval for the average maximum HP for the experimental engine.


(570 - 33.54 , 570+33.54)
(536.46 , 603.54)
<u><em>Final answer</em></u> :-
<em>The 99% of a confidence interval for the average maximum HP for the experimental engine.</em>
<em>(536.46, 603.54)</em>
<em></em>