I am setting the week hourly rate to x, and the weekend to y. Here is how the equation is set up:
13x + 14y = $250.90
15x + 8y = $204.70
This is a system of equations, and we can solve it by multiplying the top equation by 4, and the bottom equation by -7. Now it equals:
52x + 56y = $1003.60
-105x - 56y = -$1432.90
Now we add these two equations together to get:
-53x = -$429.30 --> 53x = $429.30 --> (divide both sides by 53) x = 8.10. This is how much she makes per hour on a week day.
Now we can plug in our answer for x to find y. I am going to use the first equation, but you could use either.
$105.30 + 14y = $250.90. Subtract $105.30 from both sides --> 14y = $145.60 divide by 14 --> y = $10.40
Now we know that she makes $8.10 per hour on the week days, and $10.40 per hour on the weekends. Subtracting 8.1 from 10.4, we figure out that she makes $2.30 more per hour on the weekends than week days.
Answer: 9 is the answer
Step-by-step explanation:
Answer:
Step-by-step explanation:
We can do this quite simply by using Newton's equation: forcegravity = G × M × mseparation2 .
Suppose: your mass, m, is 60 kilogram; the mass of your colleague, M, is 70 kg; your centre-to-centre separation, r, is 1 m; and G is 6.67 × 10 -11 newton square metre kilogram-2.
Since p varies directly with l,
p = kl (1)
Also, since w varies directly with l,
w = ml
or, l = w/m
Substitute in (1), we get,
p = k (w/m)
= (k/m) w
So, the price varies directly with weight.
Answer:
12
Step-by-step explanation: