The answer is 5+0.2+0.06+0.008+0.0004
The answer would be 0 solutions.
Here, we see <em>|</em><em />x+6<em>|</em><em /> = 2.
Oh wow! A foreign object!
|x+6|... two lines... what is that?
That is called absolute value. Whatever is inside the two lines, must have a positive answer!
Let's pretend we have a machine that has this absolute value function activated.
What we put in, we must get a positive answer out.
Let's put in -6.
-6 ==> BEEP BEEP ==> 6
Let's try 3.
3 ==> BEEP BEEP ==>3
Whatever we put in, if it is negative or positive, what comes out is always positive.
So, for how many values <em>x</em> is |x+6|=-2 true?
None, because the answer <em>must</em><em /> be positive!
-2 is not positive, <em>2</em><em /> is.
Answer:
The graph in the attached figure
Step-by-step explanation:
we have

Remember that the denominator cannot be equal to zero
so
The value of x cannot be equal to x=-2
<em>Simplify the numerator</em>
----> by difference of squares
substitute

simplify

The domain is all real numbers except the value of x=-2
The y-intercept is the point (0,-6) ---> value of y when the value of x is equal to zero)
The x-intercept is the point (2,0) ---> value of x when the value of y is equal to zero)
therefore
The graph in the attached figure
We want to create a linear equation to model the given situation.
A) c(r) = $6.00 + $1.50*r
B) 19 rides.
We know that the carnival charges $6.00 for entry plus $1.50 for each ride.
A) With the given information we can see that if you ride for r rides, then the cost equation will be:
c(r) = $6.00 + $1.50*r
Where c(r) is the cost for going to the carnival and doing r rides.
B) If you have $35.00, then we can solve:
c(r) = $35.00 = $6.00 + $1.50*r
Now we can solve the equation for r.
$35.00 = $6.00 + $1.50*r
$35.00 - $6.00 = $1.50*r
$29.00 = $1.50*r
$29.00/$1.50 = r = 19.33
Rounding to the next whole number we get: r = 19
This means that with $35.00, Dennis could go to 19 rides.
If you want to learn more, you can read:
brainly.com/question/13738061
Answer:

Step-by-step explanation:

