The mass of calcium hydroxide that is formed when 10.0 g of CaO reacts with 10.0 g of water is 13.024 grams
calculation
from the equation
CaO + H2O → Ca(OH)2,
1 moles of CaO reacted with 1 moles of H2O to form 1 moles of Ca(OH)2
find the moles of each reactant
moles=mass/molar mass
moles of CaO= 10 g/56 g/mol=0.179 moles
moles of H2O = 10 g/18 g/mol 0.556 moles
CaO is the limiting reagent therefore by use of mole ratio of CaO:Ca(OH)2 which is 1:1 moles of Ca(OH)2 is = 0.179 moles
mass= moles x molar mass
= 0.176 moles x 74 g/mol = 13.024 grams
The average kinetic energy of an ideal gas is calculated as
KE_avg = 3/2 kT
where T is the temperature in Kelvin and k=R/N_A; R is the universal gas constant and N_A is the number of moles.
Thus, upon substitution we get
KE_avg = 3/2(8.314/1)(100+273)
KE_avg = 3/2(8.314)(373)
KE_avg = 4651.683
The average kinetic energy of 1 mole of a gas at 100 degree Celsius is 4651.683 J.
Answer:
3 outer atoms and 1 lone pair
The subscripts tell you <em>how many atoms</em> of an element are in one formula unit of a compound.
If there is no subscript, there is only one atom of the element.
In one formula unit of Na₂PO₃F, there are
Two atoms of sodium (Na)
One atom of phosphorus (P)
Three atoms of oxygen (O)
One atom of fluorine (F)