All you need to do the cross the charges and put it as suffixes.
D+2 + E-1 ----> DE2
answer is C
A electrolytic* cell that electrolysis occurs
Ex. let say you wanted traces of graphene you would set up your usual electro-chemical exfoliation rig and the graphite you submerge would be your electrolytic cell.
Hopped this helped
To determine the empirical formula for the compound that contains <span>0.979 g Na, 1.365 g S, and 1.021 g O, we convert these to mole units. The molar masses to be used are:
Molar mass of Na = 23 g/mol
</span>Molar mass of S = 32 g/mol
Molar mass of O = 16 g/ mol
The number of moles is obtained using the molar mass for each element.
moles Na = 0.979 g Na/ 23 g/mol Na = 0.04256
moles S = 1.365 g Na/ 32 g/mol Na = 0.04265
moles O = 1.021 g O/ 16 g/mol Na = 0.06326
We then divide each with the smallest number of moles obtained.
Na: 0.04256/ 0.04256 = 1
S: 0.04265/ 0.04256 = 1.002 ≈ 1
O: 0.06326/ 0.04256 = 1.49 ≈ 1.5
We then have an empirical formula of NaSO₁.₅. However, chemical formulas must have only integers as subscripts, thus, we multiply each to 2. The empirical formula is then Na₂S₂O₃ also known as sodium thiosulfate.
Answer:
The heat absorbed by the sample of water is 3,294.9 J
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
The sensible heat of a body is the amount of heat received or transferred by a body when it undergoes a temperature variation (Δt) without there being a change of physical state (solid, liquid or gaseous). Its mathematical expression is:
Q = c * m * ΔT
Where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case:
- Q=?
- m= 45 g
- c= 4.184

- ΔT= Tfinal - Tinitial= 38.5 C - 21 C= 17.5 C
Replacing:
Q= 4.184
* 45 g* 17.5 C
Solving:
Q=3,294.9 J
<u><em>The heat absorbed by the sample of water is 3,294.9 J</em></u>
<u><em></em></u>