A + -5 = -12
A - 5 = -12
A = -7.
This is the solution.
If f(x) = 2x - 5 and g(x) = x + 52, then f(g(x)) can be deduced by placing g(x) in the spot of x in the f(x) equation as follows:
f(g(x)) = 2(g(x)) - 5
Since we know g(x) = x + 52, let's plug it in:
f(g(x)) = 2(x + 52) - 5
f(g(x)) = 2x + 104 - 5
f(g(x)) = 2x + 99
Answer:
Step-by-step explanation:
It is conjectured that the Mandelbrot set is locally connected. This famous conjecture is known as MLC (for Mandelbrot locally connected). By the work of Adrien Douady and John H. Hubbard, this conjecture would result in a simple abstract "pinched disk" model of the Mandelbrot set. In particular, it would imply the important hyperbolicity conjecture mentioned above.
The work of Jean-Christophe Yoccoz established local connectivity of the Mandelbrot set at all finitely renormalizable parameters; that is, roughly speaking those contained only in finitely many small Mandelbrot copies.[19] Since then, local connectivity has been proved at many other points of {\displaystyle M}M, but the full conjecture is still open.
Make an equation.
'is' is an equal sign
The blank can be 'x'
'of' = multiplication
18 = x * 30
Multiply:
18 = 30x
Divide 30 to both sides:
x = 0.6
Multiply by 100:
0.6 * 100 = 60%