To change a percent to a decimal, you must move the decimal point inwards two places. For example, say you have 45%. To change 45% to a decimal, move the decimal point in two places, and you will have 0.45. Once you’ve moved the decimal, don’t add the percent symbol, because it’s no longer a percent.
Answer:
16 seconds (Approximately)
Step-by-step explanation:
Given:
The function that gives the distance of snowboarder from the bottom of hill with time 'x' is:

Final position of the snowboarder is 
Now, plugging in 100 for 'd' and solving for 'x', we get:

Adding -1100 both sides, we get:

Dividing both sides by -4, we get:

Taking square root and neglecting the negative root as time can't be negative. So,

Therefore, after 16 seconds, the snowboarder will be at a distance of 100 ft from bottom of hill.
Answer:
The bulbs should be replaced each 1060.5 days.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

How often should the bulbs be replaced so that no more than 1% burn out between replacement periods?
This is the first percentile, that is, the value of X when Z has a pvalue of 0.01. So X when Z = -2.325.




The bulbs should be replaced each 1060.5 days.
Check the picture below, so the hyperbola looks more or less like so, so let's find the length of the conjugate axis, or namely let's find the "b" component.
![\textit{hyperbolas, horizontal traverse axis } \\\\ \cfrac{(x- h)^2}{ a^2}-\cfrac{(y- k)^2}{ b^2}=1 \qquad \begin{cases} center\ ( h, k)\\ vertices\ ( h\pm a, k)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad \sqrt{ a ^2 + b ^2} \end{cases} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Ctextit%7Bhyperbolas%2C%20horizontal%20traverse%20axis%20%7D%20%5C%5C%5C%5C%20%5Ccfrac%7B%28x-%20h%29%5E2%7D%7B%20a%5E2%7D-%5Ccfrac%7B%28y-%20k%29%5E2%7D%7B%20b%5E2%7D%3D1%20%5Cqquad%20%5Cbegin%7Bcases%7D%20center%5C%20%28%20h%2C%20k%29%5C%5C%20vertices%5C%20%28%20h%5Cpm%20a%2C%20k%29%5C%5C%20c%3D%5Ctextit%7Bdistance%20from%7D%5C%5C%20%5Cqquad%20%5Ctextit%7Bcenter%20to%20foci%7D%5C%5C%20%5Cqquad%20%5Csqrt%7B%20a%20%5E2%20%2B%20b%20%5E2%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
