Answer:
D. A sequence with 5 terms that starts with 3 and has a common ratio of 2
Decimals from 7.0 to 8.4 with an interval of 0.2 between each pair of decimals
We start with 7.0 and keep adding 0.2 till we get 8.4
7.0 + 0.2 = 7.2
7.2 + 0.2 = 7.4
7.4 + 0.2 = 7.6
7.6 + 0.2 = 7.8
7.8 + 0.2 = 8.0
8.0 + 0.2 = 8.2
8.2 + 0.2 = 8.4
So, the decimals from 7.0 to 8.4 with an interval of 0.2 are
7.2, 7.4, 7.6, 7.8, 8.0, 8.2
9 more than y is an expression so it would be 9+y
Answer:
the probability of no defects in 10 feet of steel = 0.1353
Step-by-step explanation:
GIven that:
A roll of steel is manufactured on a processing line. The anticipated number of defects in a 10-foot segment of this roll is two.
Let consider β to be the average value for defecting
So;
β = 2
Assuming Y to be the random variable which signifies the anticipated number of defects in a 10-foot segment of this roll.
Thus, y follows a poisson distribution as number of defect is infinite with the average value of β = 2
i.e

the probability mass function can be represented as follows:

where;
y = 0,1,2,3 ...
Hence, the probability of no defects in 10 feet of steel
y = 0


P(y =0) = 0.1353
Answer:
10.36
Step-by-step explanation:
- $47 - $42.13 = $4.87
- ($4.87 ÷ $47) × 100 = 10.36%