Answer:
x³ - 3x² - 9x + 27
= x²(x - 3) - 9(x - 3)
= (x² - 9)(x - 3)
= (x -3)(x + 3)(x - 3)
= (x + 3)(x - 3)²
Step-by-step explanation:
Answer:
15) K'(t) = 5[5^(t)•In 5] - 2[3^(t)•In 3]
19) P'(w) = 2e^(w) - (1/5)[2^(w)•In 2]
20) Q'(w) = -6w^(-3) - (2/5)w^(-7/5) - ¼w^(-¾)
Step-by-step explanation:
We are to find the derivative of the questions pointed out.
15) K(t) = 5(5^(t)) - 2(3^(t))
Using implicit differentiation, we have;
K'(t) = 5[5^(t)•In 5] - 2[3^(t)•In 3]
19) P(w) = 2e^(w) - (2^(w))/5
P'(w) = 2e^(w) - (1/5)[2^(w)•In 2]
20) Q(W) = 3w^(-2) + w^(-2/5) - w^(¼)
Q'(w) = -6w^(-2 - 1) + (-2/5)w^(-2/5 - 1) - ¼w^(¼ - 1)
Q'(w) = -6w^(-3) - (2/5)w^(-7/5) - ¼w^(-¾)
Answer:
Step-by-step explanation:
It is any number that is 3 or less
Hope that helps! :)
Answer:
67
Step-by-step explanation: Given the quadratic equation $z^2 + bz + c = 0$, Vieta's formulas tell us the sum of the roots is $-b$, and the product of the roots is $c$. Thus,
\[-b = (-7 + 2i) + (-7 - 2i) = -14,\]so $b = 14.$
Also,
\[c = (-7 + 2i)(-7 - 2i) = (-7)^2 - (2i)^2 = 49 + 4 = 53.\]Therefore, we have $b+c = \boxed{67}$.
There are many other solutions to this problem. You might have started with the factored form $(z - (-7 + 2i))(z - (-7 - 2i)),$ or even thought about the quadratic formula.
This is the aops answer :)
#1 is 2 X 10 to the 4th power
#2 is America because America has 20,000 a year and UK has 10,000 a year. The difference between them is 10,000 kilograms a year