We have two unknowns: x and y. Now, we have to formulate 2 equations. The first would come from the use of the given ratio:
We use the distance formula to find the distance between coordinates:
3/4 = √[(x-4)²+(y-1)²] / √[(4-12)²+(1-5)²]
√[(x-4)²+(y-1)²] = 3√5
(x-4)²+(y-1)² = 45
x² - 8x + 16 + y² - 2y + 1 = 45
x² - 8x + y² - 2y = 28 --> eqn 1
The second equation must come from the equation of a line:
y = mx +b
m = (5-1)/(12-4) = 1/2
Substitute y=5 and x=12 for point (12,5)
5 = (1/2)(12) + b
b = -1
So, the second equation is
y = 1/2x -1 or x = 2 + 2y --> eqn 2
Solving the equations simultaneously:
(2 + 2y)² - 8(2 + 2y) + y² - 2y = 28
Solving for y,
y = -2
x = 2+2(-2) = -2
Therefore, the coordinates of point A is (-2,-2).
You would divide 10.45 by .55 and you would get 19 so 19 is your answer hope this helps
At&t because it costs let than Verizon and still gives you the ability to make 50 calls per week.
Is there a picture of the ramp?
Answer:
The rate at which the distance between them is changing at 2:00 p.m. is approximately 1.92 km/h
Step-by-step explanation:
At noon the location of Lan = 300 km north of Makenna
Lan's direction = South
Lan's speed = 60 km/h
Makenna's direction and speed = West at 75 km/h
The distance Lan has traveled at 2:00 PM = 2 h × 60 km/h = 120 km
The distance north between Lan and Makenna at 2:00 p.m = 300 km - 120 km = 180 km
The distance West Makenna has traveled at 2:00 p.m. = 2 h × 75 km/h = 150 km
Let 's' represent the distance between them, let 'y' represent the Lan's position north of Makenna at 2:00 p.m., and let 'x' represent Makenna's position west from Lan at 2:00 p.m.
By Pythagoras' theorem, we have;
s² = x² + y²
The distance between them at 2:00 p.m. s = √(180² + 150²) = 30·√61
ds²/dt = dx²/dt + dy²/dt
2·s·ds/dt = 2·x·dx/dt + 2·y·dy/dt
2×30·√61 × ds/dt = 2×150×75 + 2×180×(-60) = 900
ds/dt = 900/(2×30·√61) ≈ 1.92
The rate at which the distance between them is changing at 2:00 p.m. ds/dt ≈ 1.92 km/h