Answer:
-3 1/3
Step-by-step explanation:
The quadratic
... y = ax² +bx +c
has its extreme value at
... x = -b/(2a)
Since a = 3 is positive, we know the parabola opens upward and the extreme value is a minimum. (We also know that from the problem statement asking us to find the minimum value.) The value of x at the minimum is -(-4)/(2·3) = 2/3.
To find the minimum value, we need to evaluate the function for x=2/3.
The most straightforward way to do this is to substitue 2/3 for x.
... y = 3(2/3)² -4(2/3) -2 = 3(4/9) -8/3 -2
... y = (4 -8 -6)/3 = -10/3
... y = -3 1/3
_____
<em>Confirmation</em>
You can also use a graphing calculator to show you the minimum.
Answer:

Step-by-step explanation:
When working with surds we need to take note of the roots present there.
To expand this equation we can do it the following way noting that √3 X √3 = 3
<em></em>
<em>Expanding (1-√3)(⅓+√3)</em>
1 X 1/3 = 1/3
1 X √3 = √3
-√3 X 1/3 =-√3/3
√3 X √3 = 3
hence, expanding the equation, we have
1/3 + √3 -√3/3 + 3
We can simply group the like terms and add them up.
[1/3 +3] +[√3-√3/3]
10/3 + 
= 
Answer: Not 100% sure but this is what I think.
-4/5
Step-by-step explanation:
(5, -1) (15, −9)
1Y - 2Y / 1X - 2X = SLOPE
-1 + 9 / 5 - 15 = 8/-10 = -8/10 = -4/5
Answer:
A is the correct answer
Step-by-step explanation:
(9 -4)/ 5
5/5
=1
Answer:
69 is your answer
Step-by-step explanation:
Have a wonderful day and good luck on you're test!