The area of a triangle is area=1/2•base•height or a= b•h / 2
The top row of matrix A (1, 2, 1) is multiplied with the first column of matrix B (1,0,-1) and the result is 1x1 + 2x0 + 1x -1 = 0 this is row 1 column 1 of the resultant matrix
The top row of matrix A (1,2,1) is multiplied with the second column of matrix B (-1, -1, 1) and the result is 1 x-1 + 2 x -1 + 1 x 1 = -2 , this is row 1 column 2 of the resultant matrix
Repeat with the second row of matrix A (-1,-1.-2) x (1,0,-1) = 1 this is row 2 column 1 of the resultant matrix, multiply the second row of A (-1,-1,-2) x (-1,-1,1) = 0, this is row 2 column 2 of the resultant
Repeat with the third row of matrix A( -1,1,-2) x (1,0, -1) = 1, this is row 3 column 1 of the resultant
the third row of A (-1,1,-2) x( -1,-1,1) = -2, this is row 3 column 2 of the resultant matrix
Matrix AB ( 0,-2/1,0/1,-2)
Answer:
WE HAVE FIND HOW MUCH MAY TIME BIGGER IS THE VOLUME OF PYRAMID B THAN PYRAMID A.
The answer is 32 times
Step-by-step explanation:
Volume of Pyramid B = 3136 in³
Volume of Pyramid A = ?
We have to find volume of Pyramid A. As Pyramid is a square pyramid, its volume is given as:

where b = base = 7 and h = height = 6. Substitute the values:

Volume of Pyramid A = 98 in³
To find how many time B is bigger than A, divide volume of B by A:

So, volume of Pyramid B is 32 times bigger than volume of Pyramid A
Answer: no solution
Step-by-step explanation: