1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
otez555 [7]
3 years ago
9

I need to simplify for the question

Mathematics
2 answers:
Afina-wow [57]3 years ago
7 0

Answer:

x^2 + 3xy + 4y^2

Step-by-step explanation:

(x - 2y)^2 + 7xy =

= (x - 2y)(x - 2y) + 7xy

= x^2 -2xy - 2xy + 4y^2 + 7xy

= x^2 + 3xy + 4y^2

Anastaziya [24]3 years ago
6 0

Answer:

\tt x^2+3xy+4y^2

Step-by-step explanation:

\tt(x-2y)^2+7xy\\\\=x^2-4xy+4y^2+7xy\\\\=x^2+3xy+4y^2

You might be interested in
What is the slope of the line that passes through the points <br> (1,−6) and <br> (−8,9)?
GenaCL600 [577]

Answer:

15/-9

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Amy and Laura recorded the average gas mileage of their vehicles each week for four weeks. What can we concluded about the relat
Assoli18 [71]

there is no table shown

4 0
3 years ago
Read 2 more answers
Complete the following statement. Round your answer to the nearest cent.<br><br> 5% of $585.26 = $
uranmaximum [27]
Five percent of $585.26 is $29.26
4 0
3 years ago
What is the distance between (22,-3) and (1, -3)?
Bingel [31]

Answer:

Option D

Step-by-step explanation:

<h2>Distance between two points</h2>

The y-value of the two points is unchanged. So, the line is parralel to x-axis.

The distance will be the diffrence between the x-co ordinates.

\sf Distance = 1 - (-2\dfrac{1}{2})

             \sf =1+\dfrac{5}{2}\\\\= \dfrac{2}{2}+\dfrac{5}{2}\\\\=\dfrac{7}{2}\\\\=3\dfrac{1}{2}

6 0
2 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
Other questions:
  • If 60% of a number is 144 what is the number?
    12·1 answer
  • CAN SOMEONE PLEASE HELP ME?!
    7·1 answer
  • Can i get help with a problem
    9·1 answer
  • What is 347316029 written in word form
    10·1 answer
  • An education expert is researching teaching methods and wishes to interview teachers from a particular school district. She rand
    8·2 answers
  • Help me, please with my homework
    15·2 answers
  • HELP I NEED HELP WITH 1,2 and 8
    15·1 answer
  • What is the inverse of the square function?
    15·1 answer
  • Ross is shopping for mulch that costs $1.29 per cubic foot. During his first trip to the store, he bought 16.5 cubic feet. He ne
    6·1 answer
  • A flowerpot has a circular base with a diameter of 27 centimeters. Find the circumference of the base of the flowerpot. Round to
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!