Answer: 8.4 inches.
Step-by-step explanation:
We know that the circumference of a circle can be calculated with this formula:

Where "r" is the radius of the circle.
We know that the circular cake (whose radius is 8 inches) is cut from the center into 6 equal pieces. Then, you need to divide the circumference of this circular cake by 6 to find the width of the outer edge of each piece of cake.
Therefore, this is (to the nearest tenth of an inch):

Answer:
a) 
b) 
And replacing we got:
![P(X \geq 3) = 1- [0.2+0.3+0.1]= 0.4](https://tex.z-dn.net/?f=%20P%28X%20%5Cgeq%203%29%20%3D%201-%20%5B0.2%2B0.3%2B0.1%5D%3D%200.4)
c) 
d) 
e) 
f) 
And replacing we got:

And the variance would be:
![Var(X0 =E(X^2)- [E(X)]^2 = 6.4 -(2^2)= 2.4](https://tex.z-dn.net/?f=%20Var%28X0%20%3DE%28X%5E2%29-%20%5BE%28X%29%5D%5E2%20%3D%206.4%20-%282%5E2%29%3D%202.4)
And the deviation:

Step-by-step explanation:
We have the following distribution
x 0 1 2 3 4
P(x) 0.2 0.3 0.1 0.1 0.3
Part a
For this case:

Part b
We want this probability:

And replacing we got:
![P(X \geq 3) = 1- [0.2+0.3+0.1]= 0.4](https://tex.z-dn.net/?f=%20P%28X%20%5Cgeq%203%29%20%3D%201-%20%5B0.2%2B0.3%2B0.1%5D%3D%200.4)
Part c
For this case we want this probability:

Part d

Part e
We can find the mean with this formula:

And replacing we got:

Part f
We can find the second moment with this formula

And replacing we got:

And the variance would be:
![Var(X0 =E(X^2)- [E(X)]^2 = 6.4 -(2^2)= 2.4](https://tex.z-dn.net/?f=%20Var%28X0%20%3DE%28X%5E2%29-%20%5BE%28X%29%5D%5E2%20%3D%206.4%20-%282%5E2%29%3D%202.4)
And the deviation:

Easy, just divide
kelly=440mi/8hr=220mi/4hr=110mi/2hr=55mi/1hr
alberto=468mi/9hr=156mi/3hr=52mi/1hr
55>52
kelly drove 55mi in 1 hour
55-52=3
she drove 3 miles more in 1 hour
Answer:
Step-by-step explanation:
