Answer: Option D. Lipids
Explanation:
Lipids store its energy in forms of triglycerides in the cells of animals. lipids can provide energy at a steady pace whereas carbohydrates releases all its energy at once.
Some lipids such as steroid act as hormones which serve as chemical messengers between cells. Steroids are chemical messengers for the body. All steroids are derived from cholesterol,
Cell membranes are made of phospholipids, this type of lipid and this lipd has a polar end because of the phosphate group.
Answer:
To be honest the Atmosphere is 72 percent nitrogen and 25 percent oxygen and
Answer:
Each mutant would be mated to wild type and to every other mutant to create diploid strains. The diploids would be assayed for growth at permissive and restrictive temperature. Diploids formed by mating a mutant to a wild type that can grow at restrictive temperatures identify the mutation as recessive. Only recessive mutations can be studied using complementation analysis. Diploids formed by mating two recessive mutants identify mutations in the same gene if the diploid cannot grow at restrictive temperature (non-complementation), and they identify mutations in different genes if the diploids can grow at restrictive temperature (complementation).
Explanation:
Recessive mutations are those whose phenotypic effects are only visible in homo-zygous individuals. Moreover, a complementation test is a genetic technique used to determine if two different mutations associated with a phenotype colocalize in the same <em>locus</em> (i.e., they are alleles of the same gene) or affect two different <em>loci</em>. In diploid (2n) organisms, this test is performed by crossing two homo-zygous recessive mutants and then observing whether offspring have the wild-type phenotype. When two different recessive mutations localize in different <em>loci</em>, they can be considered as 'complementary' since the heterozygote condition may rescue the function lost in homo-zygous recessive mutants. In consequence, when two recessive mutations are combined in the same genetic background (i.e., in the same individual) and they produce the same phenotype, it is possible to determine that both mutations are alleles of the same gene/<em>locus</em>.