Answer: Choice A) Triangle ABC is similar to triangle ACD by AA
AA stands for Angle Angle. Specifically it means we need 2 pairs of congruent angles between the two triangles in order to prove the triangles similar. Your book might write "AA similarity" instead of simply "AA".
For triangles ABC and ACD, we have the first pair of angles being A = A (angle A shows up twice each in the first slot). The second pair of congruent angles would be the right angles for triangle ABC and ACD, which are angles C and D respectively.
We can't use AAS because we don't know any information about the sides of the triangle.
True I think cause it’s divided by 5
9514 1404 393
Answer:
- ABHGEFDCA
- does not exist
- ECBADFE
Step-by-step explanation:
A Hamiltonian circuit visits each node once and returns to its start. There is no simple way to determine if such a circuit exists.
__
For graph 2, if there were a circuit, paths ACB, ADB, and AEB would all have to be on it. Inclusion of all of those requires visiting nodes A and B more than once, so the circuit cannot exist.
__
For graph 3, the circuit must include paths BAD and DFE. That only leaves node C, which can be reached from both nodes B and E, so path ECB completes the circuit.