![\rightarrow z^4=-625\\\\\rightarrow z=(-625+0i)^{\frac{1}{4}}\\\\\rightarrow x+iy=(-625+0i)^{\frac{1}{4}}\\\\ x=r \cos A\\\\y=r \sin A\\\\r \cos A=-625\\\\ r \sin A=0\\\\x^2+y^2=625^{2}\\\\r^2=625^{2}\\\\|r|=625\\\\ \tan A=\frac{0}{-625}\\\\ \tan A=0\\\\ A=\pi\\\\\rightarrow z= [625(\cos (2k \pi+pi) +i \sin (2k\pi+ \pi)]^{\frac{1}{4}}\\\\k=0,1,2,3,4,....\\\\\rightarrow z=(625)^{\frac{1}{4}}[\cos \frac{(2k \pi+pi)}{4} +i \sin \frac{(2k\pi+ \pi)}{4}]](https://tex.z-dn.net/?f=%5Crightarrow%20z%5E4%3D-625%5C%5C%5C%5C%5Crightarrow%20z%3D%28-625%2B0i%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5C%5C%5C%5C%5Crightarrow%20x%2Biy%3D%28-625%2B0i%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5C%5C%5C%5C%20x%3Dr%20%5Ccos%20A%5C%5C%5C%5Cy%3Dr%20%5Csin%20A%5C%5C%5C%5Cr%20%5Ccos%20A%3D-625%5C%5C%5C%5C%20r%20%5Csin%20A%3D0%5C%5C%5C%5Cx%5E2%2By%5E2%3D625%5E%7B2%7D%5C%5C%5C%5Cr%5E2%3D625%5E%7B2%7D%5C%5C%5C%5C%7Cr%7C%3D625%5C%5C%5C%5C%20%5Ctan%20A%3D%5Cfrac%7B0%7D%7B-625%7D%5C%5C%5C%5C%20%5Ctan%20A%3D0%5C%5C%5C%5C%20A%3D%5Cpi%5C%5C%5C%5C%5Crightarrow%20z%3D%20%5B625%28%5Ccos%20%282k%20%5Cpi%2Bpi%29%20%2Bi%20%5Csin%20%282k%5Cpi%2B%20%5Cpi%29%5D%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5C%5C%5C%5Ck%3D0%2C1%2C2%2C3%2C4%2C....%5C%5C%5C%5C%5Crightarrow%20z%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B%282k%20%5Cpi%2Bpi%29%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B%282k%5Cpi%2B%20%5Cpi%29%7D%7B4%7D%5D%20)
![\rightarrow z_{0}=(625)^{\frac{1}{4}}[\cos \frac{pi}{4} +i \sin \frac{\pi)}{4}]\\\\\rightarrow z_{1}=(625)^{\frac{1}{4}}[\cos \frac{3\pi}{4} +i \sin \frac{3\pi}{4}]\\\\ \rightarrow z_{2}=(625)^{\frac{1}{4}}[\cos \frac{5\pi}{4} +i \sin \frac{5\pi}{4}]\\\\ \rightarrow z_{3}=(625)^{\frac{1}{4}}[\cos \frac{7\pi}{4} +i \sin \frac{7\pi}{4}]](https://tex.z-dn.net/?f=%5Crightarrow%20z_%7B0%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7Bpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B%5Cpi%29%7D%7B4%7D%5D%5C%5C%5C%5C%5Crightarrow%20z_%7B1%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B3%5Cpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B3%5Cpi%7D%7B4%7D%5D%5C%5C%5C%5C%20%5Crightarrow%20z_%7B2%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B5%5Cpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B5%5Cpi%7D%7B4%7D%5D%5C%5C%5C%5C%20%5Crightarrow%20z_%7B3%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B7%5Cpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B7%5Cpi%7D%7B4%7D%5D)
Argument of Complex number
Z=x+iy , is given by
If, x>0, y>0, Angle lies in first Quadrant.
If, x<0, y>0, Angle lies in Second Quadrant.
If, x<0, y<0, Angle lies in third Quadrant.
If, x>0, y<0, Angle lies in fourth Quadrant.
We have to find those roots among four roots whose argument is between 270° and 360°.So, that root is
![\rightarrow z_{2}=(625)^{\frac{1}{4}}[\cos \frac{5\pi}{4} +i \sin \frac{5\pi}{4}]](https://tex.z-dn.net/?f=%20%5Crightarrow%20z_%7B2%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B5%5Cpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B5%5Cpi%7D%7B4%7D%5D)
Answer:
A sample size of 6755 or higher would be appropriate.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
The margin of error M is given by:

90% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
52% of Independents in the sample opposed the public option.
This means that 
If we wanted to estimate this number to within 1% with 90% confidence, what would be an appropriate sample size?
Sample size of size n or higher when
. So







A sample size of 6755 or higher would be appropriate.
Answer:
The answer to your question is below
Step-by-step explanation:
Formula
Triangle's Area = 1/2 bh/2
Trapezoid's area = 1/2 (b1 + b2)h
Parallelogram's area = bh
Rectangle's area = bh
Considering the formulas, we can conclude that:
a) The first choice is true, both formulas have 1/2 in.
b) The second choice is also true, both equations are the same
c) The third choice is incorrect
d) This choice is correct, the bases are added,
e) This choice is incorrect, the sides are not added.
y=x+5
Step-by-step explanation:
The opposite of y is x axis
Answer:
12 year old is the youngest sibling
Step-by-step explanation:
Given: The ages of three siblings are all consecutive integers.
The sum of sibling´s age is 39.
Now, finding the age of youngest sibling.
Lets assume the age of youngest sibling be "x"
As given, The ages of three siblings are all consecutive integers.
∴ Age of 2nd sibling will be 
Age of 3rd sibling will be 
next, forming an equation for the sum of sibling´s age.
⇒
Opening the parenthesis
⇒ 
⇒
Subtracting both side by 3
⇒
⇒
Dividing both side by 3
⇒
∴ x= 12
Subtituting the value of x to find the age of other sibling
∴Youngest sibling age= 12 years
2nd sibling age= 13 years
3rd sibling age= 14 years
Hence, The youngest sibling is 12 years old.